针对电机控制应用选择宽带隙器件

Display portlet menu

针对电机控制应用选择宽带隙器件

Display portlet menu

针对电机控制应用选择宽带隙器件

Milan Ivkovic
WBG motor control

在功率转换应用中,使用碳化硅(SiC)和氮化镓(GaN)材料的宽带隙(WBG)半导体器件作为开关,能让开关性能更接近理想状态。相比硅MOSFET或IGBT,宽带隙器件的静态和动态损耗都更低。此外还有其他一些优势,如更高的工作结温和更好的热导率,至少碳化硅器件是这样的。

最重要的是碳化硅的导热性能要优于硅(Si)。在电机控制领域,上述好处特别有吸引力,不仅可以节约能源,还能让驱动电子器件减少成本、尺寸和重量。

碳化硅和氮化镓器件在常态传导损耗和击穿电压方面的极值更高,让它们具有相比硅器件更好的性能表现(参见下图)。但在电子领域,选择哪款器件,很难做到直截了当。随着销售额的增长,现有的IGBT和MOSFET技术也在不断得到提升。因此,我们应当先思考一下,改用宽带隙器件是否有意义,什么时候改用宽带隙器件比较好,然后再决定是选用碳化硅器件还是氮化镓器件。

IGBT其实很好用

IGBT在电机控制方面有很多优点,尤其是在大功率的情况下,它们近乎恒定的饱和电压能使传导损耗保持在较低的水平,并且大致上与传输到电机的功率成正比。不过,在开关切换过程中损耗的功率很高,尤其是在关断时。这是由于少数载流子重新组合时产生尾“电流”,但电机控制器的开关频率通常很低,因此平均下来损耗量还是很低的。事实上,在IGBT制造过程中,会考虑到尾电流和饱和电压的平衡。所以会针对10-20 kHz的典型电机脉冲宽度调制(PWM)频率,对器件损耗进行优化。并联一个二极管,可以处理反向导通或换向产生的感性负载,或用于双向功率转换。这个二极管通常是碳化硅材料的,而且采用了共封装。也许IGBT最大的优势在于其较低的成本和经过验证的稳健性(如果仅从它较大的晶圆带来更好的热容这个角度看)。

硅MOSFET在电机控制中也有一席之地

在相对较低的功率(几千瓦的功率)、1200V左右的条件下,电机控制通常会选用硅MOSFET,其切换边界的功率耗散相对较低。电机仍然决定着最佳PWM频率,在10 kHz左右时,各类器件在开关损耗方面的优势差距不大。一些高速、低电感电机还会受益于更高的PWM频率,因为它减少了电流纹波(current ripple),提高了响应能力。

传导损耗取决于MOSFET的导通电阻,并与电流的平方成正比。因此,随着功率的增加,MOSFET的性能很快就变得不可接受了。但是,与MOSFET电流平方成比例的损耗也有优势。对于一部分应用,它们的电机大部分时间在较低或中等功率范围内运行(相对于最大功率而言,如牵引驱动)。与在集电极-发射极(collector-emitter)上具有几乎恒定的饱和电压的IGBT相比,MOSFET在传导损耗方面具有优势。MOSFET可以通过并联减少电阻,而且它们确实有一个优势,那就是内置了体二极管,可用于换向和双向传导。另外,沟道本身也可以在栅极的控制下反向传导,而且损耗较低。

不同材料的开关器件对比

图1:硅、碳化硅和氮化镓器件的理论性能极限值对比

宽带隙器件的利与弊

那么,宽带隙器件有什么优缺点呢?图1显示,在管芯面积和额定电压相同的条件下,宽带隙器件的传导损耗可以低于硅MOSFET,这是因为宽带隙材料临界击穿电压更高,沟道可以更短。氮化镓更好的电子迁移率也降低了导通电阻。在中低功率下,电流器件的传导损耗也可以低于IGBT。例如,在50 A时,IGBT饱和电压1.5 V,导通时耗散75 W功率。导通电阻为30毫欧姆的硅MOSFET或氮化镓HEMT(高电子迁移率晶体管)单元也会耗散相同的功率,正如前面所述。如今,1200 V的器件很容易达到这一数字,比如额定电流为60A、裸片电阻为20毫欧姆的onsemi SiC MOSFET NTC020N120SC1。这些MOSFET可以通过并联获得更好的性能。但是它们的电阻是在25°C时测算的,而且电阻会随着温度的升高而增大。碳化硅 MOSFET和硅MOSFET一样,也有一个体二极管。它的速度非常快,反向恢复电荷很低,但比硅器件有着更高的正向压降,因此在栅极操控沟道反向导通之前,必须将其导通时间最小化到“死区时间”内。

与硅器件相比,氮化镓器件在导通电阻和传导损耗方面也有显著的提升。然而,目前它们仅适用于650 V左右的额定电压,只能采用平面结构设计,组成HEMT单元。为了获得更高的工作电压,人们正在研究垂直沟道结构,但当衬底为硅时(这是保持低成本的必要条件),技术突破会非常困难。在氮化镓横向HEMT单元中没有体二极管。反向传导确实会在沟道内发生,而反向恢复电荷实际上为零,但压降高且不稳定。压降取决于栅极阈值和使用的任何负栅极驱动电压。

宽带隙器件的栅极驱动至关重要

栅极驱动对于硅MOSFET和氮化镓HEMT单元都非常关键,两者的阈值都很低。氮化镓器件需要小驱动电流实现导通状态,所需最高电压也只有7 V左右。碳化硅需要18 V左右才能达到完全饱和,接近其绝对最大值,约为22 V(请注意,实际值取决于具体的碳化硅器件)。因此,需要对栅极驱动合理布局,避免寄生效应产生的过电压应力,例如由于连接电感与栅极和杂散电容共振而产生的振铃。栅极和源极连接的电感也可能导致高di/dt的杂散和灾难性导通(见图2)。米勒电容对高dV/dt也可能造成类似的影响。在电机控制应用中,为了避免电机绕组应力和过大的电磁干扰,通常会故意降低边缘速率。从高di/dt通过电机机架接地的共模干扰电流也会导致机械磨损。

可以说,器件对布局和栅极驱动高度敏感是有问题的,但使用专门的栅极驱动器,可能让解决方案的设计变简单。随着集成电源模块的出现,这些困难已经得到解决。然而,外部影响难以预测,宽带隙器件对异常条件的抵御能力也值得考虑,例如电机控制中经常出现的负载过电压和短路。硅MOSFET具有额定雪崩功率,但可靠值仍在通过测试和现场数据进行确定。氮化镓HEMT单元没有设定雪崩功率,会在过电压下瞬间失灵。不过制造商设置的额定值与绝对最大值之间还留有很大的余地。宽带隙器件的短路能力评估仍在继续,要达到故障前几微秒内的合理数值。我们已经注意到,发生过电流事件时,器件会出现缓慢退化和阈值电压偏移,这在某些应用中可能是一个问题。

高di/dt的效果

Transient gate voltage diagram

图2:高di/dt导致瞬态栅极的峰间电压,且发生了共源电感 L。

要实现更低的损耗,宽带隙器件是个不错的选择

随着技术的进步,宽带隙器件的价格也降到常规器件的价格区间。在电机控制应用的功率水平不断提高的情况下,可以考虑使用宽带隙器件,它比IGBT和硅MOSFET具有更低的传导和开关损耗。尽管单位成本与旧技术相比,还有一定差距,但宽带隙器件的节能因素很关键,此外,散热片尺寸、重量和成本的降低也能为系统带来额外的好处。碳化硅MOSFET具有更高的额定电压,能承受更高的电压和热应力,在新的电机驱动设计中处于领先地位。但对于低电压、低功率的应用,您可以选用氮化镓器件,它可以实现更低的损耗。

 

关于作者

Milan Ivkovic
Milan Ivkovic

Milan Ivkovic holds advanced engineering degrees from University of Belgrade, School of Electrical E...

文章提及的元件

针对电机控制应用选择宽带隙器件

Display portlet menu

针对电机控制应用选择宽带隙器件

Display portlet menu
相关文章
Integration of Multiple Technologies Heralds a New Era in Smart Healthcare
eVTOL助力“低空经济”蓬勃发展
2025年3月15日
从应用场景来看,未来eVTOL设备将主要用于城市间快速通勤、高效灵活的物流配送以及应急响应公共服务等领域。
Integration of Multiple Technologies Heralds a New Era in Smart Healthcare
不止SiC,电动汽车中的“无名小辈”
2024年11月15日
SiC器件正在为电动汽车充电开启一个全新的时代,而无源元件如MLCC则为这一变革提供了坚实的支撑。通过合理选择和优化无源元件,可以进一步提升充电系统的效率、可靠性和性能。

针对电机控制应用选择宽带隙器件

Display portlet menu
相关活动

Plugin:Localize provider="Global Asset Library/Localizations/General" key="No+related+events+found"]