e
@ BROADCOM

AFBR-S50 SDK
Porting Guide to a Cortex-M4

Programming Guide
Version 1.0

AFBR-S50-PG100
June 22, 2020

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks
of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU.

Copyright © 2020 Broadcom. All Rights Reserved.
The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability,
function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does
not assume any liability arising out of the application or use of this information, nor the application or use of any product or
circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

Broadcom AFBR-S50-PG100
2

http://www.broadcom.com

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Table of Contents

Chapter 1: INTrOAUCTION ..eeeiiiiiiiieee ettt e e e e e e e e e e e e e e e et rr e et e et e e e e e e e aaeeaeaannas 5
1.1 AFBR-S50MV85G-EK Evaluation Kit SOFtWEAIEcooiiiiiiiiiiiec et 5
Chapter 2: Phase 1: Installing and Preparing the IDEc.iiiiiiiiiiii e 6
Step 1. Downloading and INStalling the IDEoiiiiiiiiiiie e r e e e e e e e e e s e e s areeraeeeeeeeeannnnnes 6

Step 2. DefinNiNg the WOIKSPACEooiiiiiiiiiiie ettt ettt e s bt e s ettt e s s bbb e e e e e annaneeee s 6

Step 3. Creating @ NALIVE PrOJECTccoo ittt e e ettt et e e e e e e e s s e e nbeeeeeeaaaaeeeaaaannrnes 6

P2 R | [T 1 U ot (U = OO PRR PSRRI 9
Step 4. Creating the FIle SITUCLUIEoooi e e e e e e e e e e e e e s s e s annbeeeeeaeeaeeeeesannnnnes 10

Chapter 3: Phase 2: Addition of the MCU Devices with the IDEoooiiiiiiiiiii i, 12
Step 5. Opening the Device Configuration TOO! in the IDE............ciiii e 12

1 700 R O Lo Yo 1 @0 o 1o 11 = L4 o IS 12
I S A o I S o I €1 = (@) TN 1= Y- P 13

S =] ol TS o I 2 7= TS (o ST (1 o LU PPURPRTRR 13

STEP 7. SPIDIMA SEIUD ..utttiiiiie ettt ettt st ettt ettt e e ss bt e e sk et e s be e e e ek b e e e kbt e e shbe e e aab et e et b e e e bee e e b be e e anneeeanreeennneean 16

Step 8. NSS/IRQ GPIO SEBIUPD trreettiiieeeeiiiis ittt ettt e e e e e et s s st eereeaeeeeeesssas s eataaeeeeeaeeeaesaasanansasteeeaeeeeesnsannnnnnns 16

TR I 10 1T =Y O TP PP TR T RO 19
T 700 A 1 =1 1] . [3O o 11] (= () PRSPPIt 19

Step 9. Setting UpP the FIrSt LTC TiMEr .. .uuueiiiiiieii e e e i e s ittt ee e e e e e e e e s e s s s ee e eeaaaeeeesssasnnnnnenteeeaaeaeeesessnnnnnes 20

Step 10. Setting Up the SECONA LTC TIMEL ...oiiiiiiiiiieiiitte ettt ettt e e e e e e e s e e iabbb e e e e e e e aeeeaaaannnnees 22

IR T2 o= g To o [Tol [0 1 (=T o {0 o) A Ty =T) PPt 23

G @ o o =T 2 = S 24
NI [N (T (VT o A OToT o) 1T [UT =14 (o] o PP UT TP 26
Step 11. Configuring the INterruptS iN the IDEoooiiiicee e e e e e e e e e e e e aeaaeeeeaaes 27

N R Ofo o [T 1= g T=T - 11 o o O PTRPT 28
Step 12. Setting the Code GeNEration OPLIONSoocuuuiiieiiiiiiie ettt s s e e e e e e e s enneeas 29

Step 13. Performing the Code GENEIatiONcooiiiiiiiiiiiiiieis s e e e e e e e ee s s s e s e e aaaaeaaaaaaeeeeananes 30

Chapter 4: Adapting the Generated Data to the Argus APl ..o, 33
Step 14. Adding the Required INCIUdE PathS.........coooiiiiiiecee e e e e e e e e e e e e e e e eeaeaans 33

Step 15. Adding the AFBR-S50 LIDIAIYcoooiiiiiiiiiii ettt et 34

R 12O 1 = L U R TP PTOTPRN 35
Step 16. Creation Of the IRQ Fle......ccoi oot r e s e e e s e e e e e e e aaaaaaaeeeaeanes 35

Step 17. Implementing the TRQ LOCKINGuiiiiiiiiiiiei ittt e s e ab e e e e ennes 35

S Y o I A = U TP OPPRON 36
Step 18. Creation Of the S2PI FIlE ... e e e e e e ettt e e e e e eeaeaaeeeraeaannes 36

Step 19. AddiNg the S2PI INCIUAES ...c.oiuiiiiiii et e et e e s et e e e nbb e e e e e nneeas 36

Step 20. Implementing the S2P1 Data StIUCLUIEScooiiiiiiiiiiee ettt e e e e e e e ee e e e e e e e e snnneees 37

Step 21. Implementing the S2PI INILIAlIZALIONovvviiiiiiii e e e e e e e e e e e e e aeeeaeeens 38

Broadcom AFBR-S50-PG100

3

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Step 22. Implementing the SP1 Get Status FUNCHONvviiiiiiiis i e e e e e e a e e e e e e e eeaans 39

Step 23. Implementing the Helper Functions for the SPI Baud Rate..........cccvvvieieiiiiiiiciiiiiiiiiee e 40

Step 24. Implementing the SPI/GPIO SWILCHcooiiii e 40

Step 25. IMplementing the GPIO ACCESSouuviiiiiiiiiiiiiis e e e e e e e e e et ettt a e s e s aeaaeaaaaaaaaaaaaeeeeaeeens 43

Step 26. Implementing the CS CYCINGcccceeiiiiiiieiie e e e s e e e e e e e e s s s s st eeeeeeeeseeannnnnes 45

Step 27. Implementing the SP1 TranSfer STAIt ...t 46

Step 28. Implementing the SPI Transfer COMPIELIONuuiiiiiiiii e e e e e e e e e e e 48

Step 29. Implementing the SPI Transfer ADOIT.........oooi i r e e e e e e s e ennees 51

Step 30. Implementing the SPI Transfer Error HanNdliNgooeeiiiiiiiiiiiiieee e 52

Step 31. Implementing the External Interrupt HanNAliNgcccooivii oo e e e e 52

e I T 4 L= N P PR OTPPP 53
Step 32. Creation Of the TIMEE FlEue et e e e e e e e e e e e e e aannees 53

Step 33. Adding the TIMEr INCIUAES.........ccoe et e e e et s e s e e e e e e e aaaeeeaaaaeaeeeeeenees 54

Step 34. Implementing the Timer INItAlIZAtIONoiiiiei i e e e e e e e e s ennnes 54

Step 35. Implementing the LTC REAUOULuuuiiiiiiiiieeei ettt ettt et e e e e e e s s e aanb et b e e eeaaeeeeeeannnnees 54

Step 36. Implementing the PIT STArt/STOPuuuuiiiiiiiiie et e s e e e e e e e e e e e aeaeaaaeaeeeaeanes 55

Step 37. Implementing the PIT Interrupt HandliNg.........coooviiiiiiiiiecce e e e e e e eannees 57

N @ o1 o] = M U o I AN o TP OUPEPUPTR O 58
Step 38. Creation Of the UART FilE ...t e et e s e s e e e e e e e e e aaaaeaaeaeaeenes 58

Step 39. AddiNg the UART INCIUAESuuiiiiiiiiiieeie ettt e e e e e e s s e e e e e e e e e s e s s s n e e eeeeaeeesenannnnnnes 58

Step 40. Defining the UART VAriabIesuuiiiiiiiiiiii et e et ee e e e e e e e eennees 59

Step 41. Implementing the UART INIL@lIZALIONvueiiiii i e e e e e e e e e e e e ae e e e e e e eeeeaans 59

Step 42. Implementing the UART Send OPEration..........cccuuiiiiiiiiieee e issceiiieeeeee e e e e e e s s s s snnnrnneeeeeeaeeeesennnnnnes 60

Step 43. Implementing the UART Send COmMPIELIONuuiiiiiiiiiiiaii e 60

Step 44. Implementing the Formatted Output USING PriNt()coevereiiiiirieeeeeieie s e e e e e e e e e e e e e eeeeeeaaereeeens 61

NI = Lo = 1o [N = PR OTPRPR 62
Step 45. Creation Of the BOArd Fileooiiiiiiiiii et s s 62

Step 46. Implementing the Board Fileoouiiiiii e e e e e e e e e e e e e e e e e aeaans 62

Chapter 5: Running the Example APPIICALIONuiiiiiiiiiiiiie e 63
5.1 Creating the EXample APPliCALION ... st e e e e e e e et et et e et e et e s e s e e aeaeaaeaeaaeeeeaeene 63
Step 47. Copying the EXample APPIICALION..........ciiiiiiiiie e e e e e neeas 63

Step 48. Compiling and Running the Example APPlICAtIONoooiiiiiiiiiiiii e 63
Appendix A: Modifying the Example AppliCation ... 67
A.l Setting Up Floating-Point ABI for Soft Floating Point USageccooiiiiriiiiiicciece e 67
REVISION HISTOTMY oottt e e e e e e e e oo oottt ettt ettt e e e e e e e e e e e e e e e aaa e nnannenenees 69
VErsion 1.0, JUNE 22, 2020.......cciiiiuitiiieeeieete e e e e e ettt ettt e e ee e e e s e s e b e b b e ee ettt e aeeaeeaasaa e b e b bebae e eeeaeeeeseaanbnbbeereeetaeaeeeeanaan 69
Broadcom AFBR-S50-PG100

4

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Chapter 1: Introduction

The API for the AFBR-S50 sensor family is not bound to specific features of one microcontroller and the software can
therefore be ported to a variety of microcontroller units (MCUs). However, the primary features need to be adapted to the
specific hardware of a different MCU.

This document explains the necessary steps to allow the example application from the AFBR-S50 SDK to run on a different
MCU model and manufacturer, with the Nucleo-F401RE board carrying the STM32F401RETx MCU with one Cortex-M4
core as an example.

The document describes one way to include the software to a different vendor's IDE, including the setup of the project
structure on a step-by-step approach, and the code changes required to access the required hardware on the new MCU.

It does not cover the aspects of building without an IDE, and it relies on platform abstractions provided by the platform
manufacturer.

NOTE: Refer to the APl Reference Manual for more information on the APl usage. The manual can be accessed by
starting the AFBR-S50 Explorer > Help > API Reference Manual.

ATTENTION: The figures and illustrations are specific to the STMCubelDE and the Nucleo-F401RE board, while the steps
and basic procedure should be similar on other boards.

1.1 AFBR-S50MV85G-EK Evaluation Kit Software

The software that is part of the official AFBR-S50MV85G-EK evaluation kit consists of two parts:
= A static library containing the logic required to control the AFBR-S50 device and perform measurements.
= Applications that operate the device, like the simple ExampleApp as a starting point for your application development.

Note that the library with the device logic is designed to be independent from the MCU hardware, so that it can be compiled
and distributed independently from the actual MCU model and therefore will be made available to you in binary form.

To allow this independency, the access to the actual hardware is modeled by a hardware abstraction layer (HAL), which
provides the functionality to access the device. This is an API that must be implemented on the application side and is used
by the AFBR-S50 library.

This document provides a guide on how to implement the required HAL API on your targeted device and to get the example
application running.

Broadcom AFBR-S50-PG100
5

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Chapter 2: Phase 1: Installing and Preparing the IDE

Many compilers and IDEs are available for various microcontrollers, most of which have a commercial license.

However, most manufacturers of Arm-based MCUs offer also a free IDE with an integrated version of the ARM toolchain,
which is most frequently a specifically adapted version of the eclipse IDE that has special support for their MCUs.

While the basic steps for porting the software that is part of the official AFBR-S50MV85G-EK evaluation kit are similar, the
individual steps in this guide are illustrated using an IDE called STM32CubelDE by ST Microcontrollers.

Step 1. Downloading and Installing the IDE

The first step is to download and install the IDE from the web site of ST Microcontrollers, currently available from the following
link.

https://lwww.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-
development-tools/stm32-ides/stm32cubeide.html

Follow the instructions of the installer.

Step 2. Defining the Workspace
The workspace is the area where all projects regarding the device live.

You can either use the default, or create a new workspace for the project (File > Switch Workspace > Other...).

Figure 1: Switching to a Project Workspace

[} STM32CubelDE Launcher X

Select a directory as workspace
5TM32CubelDE uses the workspace directory to store its preferences and development artifacts.

Workspace: .\”| C:\Users\usernamej\STM32CubelDE\workspacejrgus w Browse...

[] Use this as the default and do not ask again

» Recent Workspaces

In this example, a new workspace is created with the name "workspace_argus" for the user _username_, which is the name
of the user logged in.

Step 3. Creating a Native Project
First, start with a project for the targeted board or processor type.

In the example, this is done by selecting Start new STM32 project from the startup menu.

Broadcom AFBR-S50-PG100
6

https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-ides/stm32cubeide.html

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Figure 2: Starting a New Project in the IDE

] workrpace_sgue - STRILCukaDD

or Maagite Sasrch Preject Run Window Help

Welcome to STM32CubelDE

Start a project

Start new 3TM32
project

Quick links

[@ Read $TM32CubelDE Documentation |

i Getting Started with STM32CubelDE |

@ Explore What's New in STM32CubelDE |

The advantage of using the manufacturer's IDE to create the project is that it can create an initial setup tailored to the used
board or microcontroller. Therefore, the next step is to select the used board or MCU from the selection list.

In this example, this is the NUCLEO-F401RE evaluation board, which features the STM32F401RE microcontroller.

Figure 3: Target Board/MCU Selection in the IDE

[sTM32 Project

] X
Target Selection
Select STM32 target
Board Filters
Features Large Picture Docs & Resources
Part Number Search ~ ¥ NUCLEO-FA01RE
— STMicroelectronics NUCLEO-F401RE
Board Support and Examples
> Unit Pr US$):13.0
Vendor Active nit Price (USS)
Product is in mass Mounted device:
Type > production STM32F401RETx
MCU/MPU Series >
Other - Boards List- 143 items Ty Export
Prce From 0.0 10 560.0 . [Tovervew | porio 1 Tupe Jioricing._[uni price iouncea.|
- v = g
0.0 560.0

et

Oscillator Freq. From 0 to 25 (MHz -

) N
L1 tr mNUCLEO-HMRE Nucleofd Active 13.0

Peripheral v hﬁ:!ﬂ!
L e -

@ <Back Finish Cancel

Broadcom AFBR-S50-PG100
7

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Next, you must choose the project name and set options.

Figure 4: Target Setup in the IDE

L sT™M32 Project | X

Setup STM32 project

Project
Project Name: | Argus_ExampleApp_STM32F401
[[] Use default location

Location: | Ci/Users/_us ername_|r’STM 32CubelDE/workspace_argus| | Browse..,

Options
Targeted Language
@ E O Ce++
Targeted Binary Type
(® Executable (O Static Library

Targeted Project Type
(@ STM32Cube O Empty

'? < Back MNext > Cancel

The name can be chosen freely, for example, according to your company's standards, as can be the targeted language.
Because the example uses the native type as the targeted project type, the IDE generates a project that already contains

specific code for the architecture.

Click Finish to create the project.

ATTENTION: You might see a prompt about whether to initialize all peripherals with their default mode. If this occurs, click

No to follow the instructions.

Because the project is created specifically for the object type, several files containing platform-specific code are generated

by default in the project's structure.

Broadcom

AFBR-S50-PG100
8

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 5: Automatically Created Project Structure

E workspace_argus - STM32CubelDE —
File Edit Source Refactor Mavigate Search Project Run Window Help

il B8~ Q@ Wi - [~ i@y
L Feero @
I Project Explorer 52 0% v = 8
v [Argus_ExampleApp_STM32F401
~ [Includes
18 Argus_ExampleApp_STM32F401/Core/Inc
8 Argus_ExampleApp_STM32F401/Drivers/CMSIS/Device/ST/STM32F4xx/Include
18 Argus_ExampleApp_STM32F401/Drivers/CMSIS/Include
= Argus_ExampleApp_STM32F401/Drivers/STM32Fdic_HAL Driver/Ing
= Argus_ExampleApp_STM32F401/Drivers/STM32F4xx_HAL_Driver/Inc/Legacy
(15l C:/ST/STM32CubelDE_1.1.0/5TM32CubelDE/plugins/com.st.stm32cube.ide.mcu.externaltools.gnu-tools-for-st
(1= C:/ST/STM32CubelDE_1.1.0/STM32CubelDE/plugins/com.st.stm32cube.ide.mcu.externaltools.gnu-tools-for-st
(15l C:/ST/STM32CubelDE_1.1.0/5TM32CubelDE/plugins/com.st.stm32cube.ide.mcu.externaltools.gnu-tools-for-st
w 2 Core
v = Inc
main.h
stm32fdix_hal_conf.h
stm32fdux_it.h
v = Src
[£ main.c
[strn32fdex_hal_msp.c
[€] stm32fdxx_it.c
[syscalls.c
[£] sysmem.c
[system_stm32fdix.c
v [= Startup
startup_stm32f401ret.s
w 2 Drivers
(= CMSIS
= S5TM32Fdxx_HAL _Driver
E Argus_ExampleApp_STM32F401.ioc
i STM32F40TRETX_FLASH.Id
1w STM32F401RETX_RAM.IA

£ >
L Argus_ExampleApp_STM32F401

= 8

0 iterr

Desc

(iccrcces]| o0 | (D

1

2.1 File Structure

Four types of files exist in the project:
= Files that belong to the AFBR-S50 SDK

There is no need to adapt these files, and they should live outside the workspace.
They are linked from the project using the include path of the compiler.

= Automatically generated files that belong to the target projects

These files are those imported or generated by the wizards of the IDE and the files from the device application. They

should be part of the workspace.

The IDE creates them automatically in the Cor e folders for the files that are specific to the project and the Dri vers

folder for the included predefined files from the source distribution.
= Manually generated API hardware layer

These files implement the hardware layer API required by the AFBR-S50 library. They use the automatically generated

files.
An API folder is created for these files.

Broadcom

AFBR-S50-PG100
9

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

= Manually generated files that belong to the target projects
These files are created in the editor and belong to the device application. They should also be part of the workspace.
An App folder is be created for these files.

Step 4. Creating the File Structure

Create the following folders as source folders in the Project on the top level. This is done using the context menu of the
Argus_ExplorerApp project in the Project Explorer (New > Source Folder).

n AP
= App

ATTENTION: It is essential to create a Source Folder rather than Folder. Otherwise, the source files are not compiled with
the IDE.

Figure 6: Creating the Source Folders in the IDE

[T} New Source Folder O X

Source folder —
Add a new source folder f .-"'

Project name: | Argus_ExampleApp_STM32F401 | Browse...

Folder name: |_NAMEJ | Browse...

Update exclusion filters in other source folders to solve nesting.

Broadcom AFBR-S50-PG100
10

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4
Figure 7: Project Structure with New Folders

I workspace_argus - Argus_ExampleApp_STM32F401/API... — O X

File Edit Source Refactor MNavigate Search Project Run

Help
N HQA - R - 2@ S~ Q™
Ll oD | | @ [Quikaces i w9 | B 4

i Project Explorer §2

Window

B<}=

=L
v [Argus_ExampleApp_STM32F401 2
> 1;;;' Binaries 2
=
O
> [Drivers
> (= Debug

= Argus_ExampleApp_STM32F401 Debug.launch
[1] Argus_ExampleApp_STM32F401.ioc
3§ STM32F401RETX_FLASH.Id

‘i STM32F401RETX_RAM.Id
<

(£ /Argus_ExampleApp_STM32F401/App

Broadcom

AFBR-S50-PG100
11

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Chapter 3: Phase 2: Addition of the MCU Devices with the IDE

Now you need to add the hardware devices on the MCU and their configuration and initialization.

Two options are usually available:
1. Manually create the device configuration.

2. Have the device configuration automatically created by the wizard.

The first option is always possible and does not depend on the IDE. On the other hand, it requires a more detailed knowledge
of the MCU type and the I/O hardware registers, on the manufacturer's software that comes with it, or both.

Therefore, the second option is chosen, but it is difficult to explain all the steps in detail, so that they can be reproduced in
a similar fashion on a different vendor's hardware. In addition, the focus is on what exactly is set up, so that the description
is also helpful if the first approach is chosen.

Step 5. Opening the Device Configuration Tool in the IDE

The STMCube32 IDE has a device configuration tool, in which the setup of the hardware can be defined graphically. This
tool can be opened by clicking Argus_ExampleApp_STM32F401.ioc in the project folder.

Figure 8: Opening the Device Configuration Tool

L workspace_argus - Argus_ExampleApp_STM32F401/App/main.c - STM32CubelDE -] X
File Edit Source Refactor MNavigate Search Project Run Window Help
wiQidin- R RS SRR Ar-RACREE R R4 PR
> - ot LI > H el _’:'J_I__P_—;_ re '-\-=‘E:| ux i <3
{5 Project Explorer I3 58 v =8 =
v [T Argus_ExampleApp_STM32F401 n
4 Binaries -
[l Includes
& APl ? |
(2 App =)
2 Core 2 |
2 Drivers
= Debug '“_’
| Argus_ExampleApp_STM32F401 Debuggaunch =
m Argus_ExampleApp_STM32F401.ioc b
i STM32F401RETX_FLASH.Id i
w STM32F401RETX_RAM.Id .
im|
x| Argus_ExampleApp_STM32F401/Argus_BxampleApp_STM32F401.io0c
a

3.1 Clock Configuration

The board must have a valid clock configuration to operate the compute core and the peripheral devices at valid frequencies.
Choose the highest valid frequencies to operate at optimal speed.

Broadcom AFBR-S50-PG100
12

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

In the IDE, this configuration can be selected in the Clock Configuration section of the device configuration tool. This includes
the configuration of the oscillators for the board and their frequencies. In the predefined board example, the only required
setup is the multipliers and dividers to get the correct frequencies for the system clock and the peripheral clocks.

For performance reasons, the device should operate the MCU processing core and the peripheral devices at the maximum
speed according to the data sheet, which is 84 MHz for the core and most internal clocks, and 42 MHz for the PCLK1 (that
is, APB1 peripheral clocks). The following figure shows the appropriate prescaler values. Make sure that all resulting clock
frequencies (the values on the very right of the graph) are correct.

Figure 9: System Clock Configuration in the IDE

[werkrpace_squ - Device Cerfiguestion Teel - STMEIC belDF - o x
File [dit Scurce Refactor Mevigte Search Project Run Windew Help
wig e L R - R - RS e - N Y - Gletoe |t B v | EBm &

€] s2pic & angus_s2pih €] st 32%4cx_h [y st 328kcx_h. €] st 328dx_h. €| gpée.c [Argus Exampl. 11 9 gpioh

TA A Ak

T

3.2 S2PI (= SPI + GPIO) Layer

The S2PI layer is a combination of SPI and GPIO. It concerns all data lines to the ToF sensor.

Step 6. SPI Basic Setup

The first task is to determine or identify the GPIO lines that are connected to the device.
For the SPI connection alone, you need four GPIO pins directly to address the device:
1. SPI clock (SCK)

2. SPI master in/slave out (MISO)
3. SPI master out/slave in (MOSI)

Broadcom AFBR-S50-PG100
13

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

4. SPI slave select (SS or NSS), usually called chip select (CS) by the slave

Because the SPI interface can only be operated by the microcontroller as master, an additional input GPIO line is required
to allow the device to signal when the requested data is available. From the board layout, this pin is D9 on the board, which

maps to PC7 on the MCU. It is called IRQ in the following section, and is active low.

From the device adapter on the board, these can be mapped to the external names that they correspond to as shown in the

following figure.

Figure 10: Nucleo-F401RE Board View

iz IGE A 84v—0

-
-
[
-
L]
L
]
4
&
s
L
L
L
&
L]
L
]
.
L §

The GPIO lines can be determined from the board specification.

Table 1: SPI GPIO Mappings

- www.st.com/stm32nucleo

B B NN N AN B U BN B B B B B B]

Function Marking on the Board External Pin GPIO on the MCU
SCK SCK/D13 D13 PA5
MISO MISO/D12 D12 PA6
MOSI PWM/MOSI/D11 D11 PA7
NSS PWM/CS/D10 D10 PB6
IRQ PWM/D9 D9 PC7

Broadcom

AFBR-S50-PG100

14

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Usually, several SPI controllers are on a microcontroller, so the correct one must be chosen. Here, the controller is identified
with the vendor's documentation as SPI11. However, although one of the printed hames of the board is CS, NSS of SPI1
corresponds to GPIO PA4, not PB6.

Unfortunately, this means that the NSS must be set up and operated manually. On the other hand, you could attach more
than one slave to the same SPI interface; for example, another AFBR-S50 device. This, however, is out of the scope of this
document.

If the device is attached to the native NSS of your board, you can choose this NSS to be operated by hardware. In this case,
skip all of the following steps for special handling of NSS using software. On this board, hardware operation must be
disabled.

To set up the physical parameters of the SPI interface, you need to know the operation parameters of the device. The user
manual of the AFBR-50 describes these as SPI mode 3 (CPOL=1, CPHA=1). This means that the clock polarity should be
high (in idle state), and the data is captured on the second (rising) edge of the clock signal.

In addition, the SPI implementation of the STM F401RE only allows the SPI clock speed to be the system clock speed (which
is also the MCU clock speed) divided by a power of 2, the prescaler. Because the system clock speed is 84 MHz, choose a
prescaler of 4 to yield an SPI speed of 21 MHz.

All of these parameters can be chosen in the IDE as shown in the following figure.

Figure 11: SPI Base Settings in the IDE

5 workspace_argus - Device Configuration Tool - STM32CubelDE = O X
File Edit Source Refactor Navigate Search Project Run Window Help
3= B-R-aivi@Qidig-a8-Ed-Gri-QU-i®™~

- oo e _-a;u.._l_ Access || 9 | B3I [0 4%

3 | g} mainc L] stm32fdx_h... Le] stm 32fdxx_h... e = & g

Configuration | Project Manage

. - L

Additional Software v Pinout EJ

SP11 Mode and Configuration =
“ e

. Mode |Full-Duplex Master g

Syste Hardware NSS Signal |Disable

e
Timers » .Ruul-ﬁunﬁgunﬁnn-

Conne... ™ .:

@ DMA
@ Parameter Setfings

=etlings

i Configure the below parameters
12C1 .
12C2
12C3
e - Basic Parameters

Frame Format Motorola

SPI2 Data Size 8 Bits
SPI3 First Bit MSB First
USART1 ~ Clock Parameters

USART2 Prescaler (for Baud Rate) 4
USARTE Clock Polarity (CPOL) High
UsB_o1 Clock Phase (CPHA)

~ Advanced Parameters
CRC Calculation Disabled
Multim NSS Signal Type Software

Broadcom AFBR-S50-PG100
15

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Step 7. SPI DMA Setup

With an SPI speed of 21 MHz, the data transfer rate is very high, and therefore, the transfer mechanism for the SPI data
should be direct memory access (DMA).

This requires additional configuration. Usually, two independent channels for data transmission (TX) and reception (RX)
must be set up. No special configuration is necessary for these channels, so they can be activated in the IDE by clicking
Add twice and selecting each channel.

Figure 12: : SPI DMA Settings in the IDE

E workspace_argus - Device Configuration Tool - STM32CubelDE - m} X
File Edit Source Refactor Mavigate Search Project Run Window Help
A |§3vﬁv@5‘@\EQE@E@vﬁﬁv@’v@v oy Qi@ g i E T
Y IS It [auesneees | g |GG 4
= [Brgus_Exampl..; &2 | [¢] mainc [€] stm32fdxx ... €] stm32dxx_h... [H] stm32fdix_h... 5 =& &
=
: &l
v Pinout (=}
SPI1 Mode and Configuration :}_ =
e
_ [
System Core Mode |FuII-DupIex Master ~ ‘ m-
Hardware NS5 Signal |D\sable ~ ‘ ;=-
Analog » -
Configuration
Timers »
Reset Configuration
Connectivity ™~
in @ DMA Settings
12C1
12c2 DMA Request
12C3
sDI0 SPH_RX DMAZ Stream 0 Peripheral To Memory Medium
m_ SPI1 TX DMA2 Stream 3 Memory To Peripheral Medium
SPI2
SPI3 (Al
USART1 .
USART? +DMA Request Settings
USARTE Peripheral Me
UsB_0TG_|
E— Mode Increment Address O
Multimedia > Use Fifa [Threshold |:| Data Width Byte ~
.
i a8

Step 8. NSS/IRQ GPIO Setup

Now, the two remaining GPIOs must be set up manually.

Navigate to the GPIO setup page by selecting Pinout & Configuration > Categories > System Core > GPIO.

For the NSS GPIO line, the type is set to GPIO output line on the CS pin (PB6) identified by the board review.

Broadcom

AFBR-S50-PG100
16

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 13: NSS GPIO Type Selection in the IDE

m workspace_argus - Device Configuration Tool - STM32CubelDE - m] X
File Edit Scurce Refactor Mavigate Search Project Run Window Help
G-l - &R ViQdig - f-F-it-Qu-i® s 5
L= [Guncees || o5 | D 4
5 [Argus_Exampl... 52 | [mainc €] stm32fdxx_h... (8] startup_stm... €] stm32fdxx_h... | stm32fdxx_h... 6 = & 5
& Pinout & Configuration 5
=l
Additional Software 2
Q GPIO Mode and Configuration : =
: g
: &
[Show All ~] g -
Syst.._ o =
=yl @ GRE © C | =
m Search Signals Reset_State
Py PT= i i 12C1_SCL
WDG [Show only Modified Pins
S| [sio_[cPifoPl foPL [Ma use Mo]
PA5 SPlL._nfa Alte_ No . Ver._ O
WWD PAB SPl..nfa Alte. No .. Ver.. O -
- Egg S}F‘I... Ep'a g\tte... zo \Ller.. g SVENTOUT
wa Fow [out. to.. Sow GPIO_EXTI5
Analog > PC7 nfa nfa Ext.. Pull.nfa —— Gro_BTn
STM32F401RETxX
Timers > LQFP64
Conn... »
Multi... »
Com... »
Midd... »
ra -
7 Sele?l Pins ﬁum. Iab_\e to configure them. @ L Q u ﬂ
Multiple selection is Allowed.
il a
Broadcom AFBR-S50-PG100

17

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

For the interrupt GPIO line, the type is set to external interrupt on the IRQ pin (PC7) identified by the board review.

Figure 14: IRQ GPIO Type Selection in the IDE

E waorkspace_argus - Device Configuration Tool - 5TM32CubelDE - O *
File Edit Source Refactor Mavigate Search Project Run Window Help
i |~ | - BIR R G GBS -G it Quri® i T
L - fl-ee-o M0 [QuickAccess || % | [F] I 4
751 us Exampl..: 52 | [£] main.c [€] stm32fdxx_h. [8 startup_stm... [] stm32f4xx_h. [] stm32fdxx h... s = g 751
S ®
o 2 =]
Additional Software ~ Pinout =]
Q GPIO Mode and Configuration : i£F Pinout view B
|-
: ;
[how Al v g o
. e]
Reset_State
m Search Signals - 1253_MCK
WDG |I| [Show only Modified Pins }
S| _[sio for fer fei fMa use [Mo]
PAS SPI_n/a Alte Mo . . Ver . O
WD PAG SPl__nfa Alte Mo . Ver . O
- PA7 SPl..nfa Alte. Mo.. Ver.. O
PB6 nfa Low Out.. No.. Low O
/! /! /
Analog > PC7 nfa nfa Ext. Pull.n/a
STM32F401RETxX
Timers » LQFP64
Conn... »
Multi... >
Com... »
Midd... >
A =
7 SE‘EI.:I Pins frnrr] tablle to configure them. Q L _)\ m ﬂ
Multiple selection is Allowed.
i)]

Now the detailed settings for these two GPIO pins can be modified.

For the NSS GPIO line (PB6), all other parameters are simply selected as for the SPI output lines:
= GPIO output level = High

m GPIO Mode = Output Push Pull

m GPIO Pull-up/Pull-down = No pull-up and no pull-down

m Maximum output speed = Very High

The IRQ line (PC7) is an active low input line, so it should be pulled high by default. In addition, this GPIO must be activated
and configured as an external input triggering an interrupt on the falling edge. Use the following settings:

m GPIO Mode = External Interrupt Mode with Falling edge trigger detection
= GPIO Pull-up/Pull-down = Pull-up

The following figure shows the described configuration in the IDE.

Broadcom AFBR-S50-PG100
18

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 15: IRQ and NSS GPIO Pin Settings in the IDE

m workspace_argus - Device Configuration Tool - STM32CubelDE — [m] X
File Edit Scurce Refacter MNavigate Search Project Run Window Help
NGO HR A RBIEH SO R @I IRE TGO || @®
(oo i = @@
5! €] stm32fdux_it.c [8] startup_stm... [s2pic stm32fdxx_h... [<] gpio.c [] main.c [0 “Argus_Exam... 32 | Zg = & 5!
®
. &
v
Pinout 2
GPIO Mode and Configuration lis]
_ Configuration =
:
[show A | o=
=
GPID Search Signals
ﬂ WDG l:l [1 Show only Modified Pins
we o) e GFIO mode P10 Pul-—| Waximy |User L |Moifed]
PA2 USART2 TX nl’a Alternate Function Push Pull Mo pull-up ... Very High
WWDC PA3 USART2 RX nfa Alternate Function Push Pull No pull-up ... Very High |:|
- PAS SPI1_SCK nfa Alternate Function Push Pull No pull-up .. Very High O
PAG SPH_MISO n/a Alternate Function Push Pull Mo pull-up ... Very High]
AL PAT SPI1_MOSI_nfa___Alternate Function Push Pull Mo pull-up . Very High O
PBE n/a High Output Push Pull No pull-up ... Very High | NSS
T > PCT n/a nfa External Interrupt Mode with Falling edge trigger detection Pull-up nia
- 12| Select Pins from table to configure them. Multiple selection is Allowed.
zl a

3.3 Timer Layer

The timer layer implements two timers: a lifetime counter (LTC) for time measurement duties and a periodic interrupt timer
(PIT) for the triggering of measurements on a time-based schedule.

CAUTION! The lifetime counter is mandatory to heed the eye-safety limits. This timer must be set up carefully to guarantee
the laser safety to be within Class 1.

3.3.1 Lifetime Counter (LTC)

Set up the lifetime counter to deliver the current time in microseconds, with microsecond resolution.
Because it would not be advisable to trigger the SysTick interrupt that frequently, this counter is based on hardware timers.

However, even if a 32-bit timer is used, it wraps after 4294.967296 seconds, which is a little more than one hour of operation.
To avoid this, two 32-bit timers are chained together. In this example, the first timer represents the fractional part of time (that
is, microseconds) and wraps after 1,000,000 ticks. Each tick is exactly one microsecond. The second timer represents the
integer part of time (that is, seconds). It is triggered by the first timer upon restart.

This platform provides two 32-bit timers, TIM2 and TIM5, that are used for the lifetime counter.

NOTE: If your hardware does not have counters of enough width, or not enough counters, you have other options that
require additional code:
e Chain more counters to replace one 32-bit by two 16-bit timers.

e Chain a 32-bit and a 16-bit timer and use the full 32-bit span for the first counter, and determine the seconds in the
code (will wrap after more than 9 years).

AFBR-S50-PG100
19

Broadcom

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

e |If the preceding options are not feasible, use a 32-bit or two chained 16-bit timers, and compare the result to the
previously read counter value. Assume that the counter has only wrapped once if the newly read value is smaller
than the previous one, and add 4,294,967,296 microseconds to the counter value.

Step 9. Setting Up the First LTC Timer

Because the STM32F401 provides enough timers, you use the first available 32-bit timer for the first LTC timer, which
is TIM2.

To achieve this configuration, set up the timer as follows:

It should be in normal mode and be triggered by the internal clock.

The counting direction should be UP.

The prescaler value is set in a way that generates the counter value in microseconds:

Because the counter is driven by the system clock, this value is calculated from the system clock frequency:
SystemCoreClock / 1000000 — 1

The counter period should be set to 1000000.

An output trigger is generated when the counter period value is reached.

In the IDE, the following figure shows the setting for this counter.

Broadcom

AFBR-S50-PG100
20

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 16: Configuration of the First LTC Timer in the IDE

E workspace_argus - Device Configuration Tool - 5TM32CubelDE
File Edit MNavigate Search Project Run Window Help

HEHR R -E Q-]

R RS RN RN N i |

51 [main.c

m “Argus_Exampledpp_STM32F401ioc &3

(vocces] w8 | @4

= &

L= Pinout & Configuration
Additional Software

ck Caonfiguration

Project Manager

v Pinout

TIM2 Mode and Configuration

Slave Mode |Disable

Counter Mode

Syst... Trigger Source Disable V|

Clock Source |Internal Clock V|
Analog

Channel1 |Disable ~]
Timers Channel2 |Disable v]

Channel3 |Disable ~]
RTC -
IV Channeld |D|Sable ~ |

=> Combined Channels [Disable V|

T3 [Use ETR as Clearing Source

[XOR activation
TIMS
TIMA0 [J One Pulse Mode
TiM11 .

Configuration
Conn...
Multi....
Com...
~ Counter Settings

Middl... Prescaler (PSC - 16 bits value) SystemCoreClock / 1000000 -1

Up

Counter Period (AutoReload Reg.| 1000000

Internal Clock Division (CKD)
auto-reload preload

~ Trigger Output (TRGO) Parameters
Master/Slave Mode (MSM bit)
Trigger Event Selection

Mo Division
Disable

Disable (Trigger ingut cffect not delayed)
Update Event

=

NOTE: To enter an expression into the Prescaler parameter field, the parameter check has to be disabled before.
Otherwise, the expression is cleared to 0. To disable the parameter check, click on the Gear-Wheel symbol that
appears near the Value field and select No check.

Broadcom

AFBR-S50-PG100
21

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Figure 17: Disabling the Parameter Check for the Prescaler Setting

Q ﬂ

+ Counter Settings
Prescaler (PSC - 16 bits val... SystemCoreClock / 1000000 - 1
Counter Mode Down |
Counter Period (AutoReload... 0 v No check
Internal Clock Division (CKD) Mo Division

Step 10. Setting Up the Second LTC Timer
Now, you set up the second 32-bit timer for the LTC, which is TIM5.

The second timer is set up as follows:

= It should be in slave mode, with the external source used as a trigger.

m The counting direction should be UP.

m The event generated by the first timer should be used as a trigger (ITRO according to the manual).
m A prescaler is not required (0).

= The counter should count to the maximum value (OXFFFFFFFF).

Broadcom AFBR-S50-PG100
22

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 18: Configuration of the Second LTC Timer in the IDE

E workspace_argus - Device Configuration Tool - 5TM32CubelDE — O *
File Edit Mavigate Search Project Run Window Help
B-BR ®-%-BiQ & H-Q-F-i-F-CE-0- 20

| B

& [€ main.c m"Argus_ExampIeApp_STM32F40‘I.ioc o = & =

-k Configuration

Project Manager Tools

v Pinout
TIM5 Mode and Configuration

b

Counter Mode

Counter Period (AutoReload Re§...

Internal Clock Division (CKD)
auto-reload preload
Slave Mode Controller

~ Trigger Output (TRGO) Parameters
Master/Slave Mode (MSM bit)

Trinnar Fuant Qalartinn

c
Slave Mode |External Clock Mode 1 ~ |
Syst.. » Trigger Source |ITRU V|
O Intemal Glock
Analog >
Channel1 [Disable v]
Timers Channel2 [Disable v]
- Channel3 |Disable v]
RTC -
TV Channeld |D|Sable ~ |
’ ned Channels [Disable |
s [XCR activation
CoDITE O One Pulse Mode
TIMS
TIM10
TIMAA :
Configuration
Conn... »
Multi_.. »
Com... »
~ Counter Settings
Middl... > Prescaler (PSC - 16 bits value) (0

Up
OxFFFFFFFF

Mo Divisian
Disable
ETR mode 1

Disable (Trigger input effect not delayed)
Racat (1113 hit frnm TNy FER)

3.3.2 Periodic Interrupt Timer (PIT)

The periodic interrupt timer triggers the ToF measurement periodically. By using a dynamic configuration of the prescaler
and the counter value, a 16-bit counter should be sufficient. The example uses the 16-bit counter TIM4.

This timer is set up as follows:
= |t should be in normal mode.
= The counting direction does not really matter, DOWN is selected.

Broadcom

AFBR-S50-PG100
23

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

m The prescaler and counter values are set dynamically later when activating the counter.
= An interrupt is generated when the counter reaches O.

Figure 19: Configuration of the PIT Timer in the IDE

m workspace_argus - Device Configuration Tool - 5STM32CubelDE

File Edit Mavigate Search Project Run Window Help
M-HR 8- R @@ & - Qs rF 0O 2O
[Quckacces]

= [€) main.c [*Argus_ExampleApp_STM32F407joc 52
L=l pinout & Configuration
v Pinout
TIM4 Mode and Configuration

Categarie
Slave Mode ‘Disab\e

Reset Configuration
C.. :

>
>

~]
5. > Trigger Source ‘DISEb\E ~ ‘
I Internal Clock l
A
Channel1 |D|sable V‘
Ti Channel2 [Disable v
- Channel3 [Disable v
RTC
TV Channeld |D|sable V‘
Combined Channels |Disable ~ ‘
TIM3 VOB artiation
[XOR activatic
[One Pulse Made
TIMS
TIM10
TIM11

-

M. Configure the below parameters :

c.> fafu=cnn | @ 0

~ Counter Settings

M. > Prescaler (PSC - 16 bits value) SystemCoreClock / 1000000 - 1
Counter Mode Down
Counter Period (AutoReload Regi]. 0
Internal Clock Division (CKD) Mo Division
auto-reload preload Disable

~ Trigger Output (TRGO) Parameters

Enable (CNT_EN)

Trigger Event Selection

Master/Slave Mode (MSM bit) Diszble (Trigger jnout effect not delayed)

[i]

= | @[+

3.4 Optional: UART

To be able to log from the example application, the UART interface must be set up.

This does not result in an actual serial line, but it is a virtual serial line provided over the USB port.

For the UART, the default settings are a good starting point (8N1). The default baud rate of 115,200 could also be increased

to be able to log even at high frame rates.

The configuration in the IDE looks like the following figure.

Broadcom

AFBR-S50-PG100
24

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 20: UART Configuration in the IDE

D werkspace_argus - Device Configuration Tool - STM32CubelDE -] X
File Edit Mavigate Search Project Run Window Help
T R R R TR R R R R IR R =R TN [Quickaccess || g9 | B [4
5 (€] main.c <] spic [<] s2pic [£] *main.c €] board.c T coph Th gpioh S =& g
h= Pinaut & Configuration >
Q
Additional Software v Pinout
Q_ v| @ USART2 Mode and Configuration 4
e
SystemCors > Mode |Asynchronous : o |
Hardware Flow Control (RS232) Disable v |
Analog >
Timers >
Connectiity Configuration
* Reset Configuration
12C1
12c2 — > ® Parameter Settings
12c3 Conﬁgu:e the below parameters
SDIo i
v Q
SPI2
sPi3 v Basic Parameaters
USART1 Baud Rate 115200 Bits/s
Word Length 8 Bits (including Parity)
USARTE Parity None
USB_OTG_FS Stop Bits 1
 Advanced Parameters
Data Direction Receive and Transmit
Multimedia > Ower Sampling 16 Samples
Computing >
Middleware >
a8

As for SPI, you want to be able to use DMA for sending, so the DMA must also be set up.

Broadcom

AFBR-S50-PG100
25

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 21: DMA Settings for UART in the IDE

File Edit MNavigate Search Project Run Window Help

fux | 52 | |€] board.c T cop.h | gpioh Py = &8

Project Manager

[spic [€) s2pi.c [€] *main.c

& [g mainc

v Pinout
USART2 Mode and Configuration

System Core > Mode |Asynchrnnnus ~ |
Hardware Flow Control (RS232) |D|sab\e V|
Analog be
Timers ?
Configuration
Connectivity
Reset Configuration
12C1 @ Paramet, ngs | @ User Constants | @ N\
12C2
12C3 DA Reguest
SDIo
USART2_RX DMAT Stream 5 Peripheral To Memory Low
sp2 USART2_TX DMAT1 Stream 6 Memory To Peripheral Low
SPI3

m workspace_argus - Device Cenfiguration Tool - STM32CubelDE - [m} X

QdID-LE B -8 Bt -Q-iv-il-i-0c-0- |0 [Quickaccess |1 g% | B[4

MO

3.5 Interrupt Configuration

Now all devices have been set up, but they also depend on interrupts that have to be configured:

The DMA transmit and receive complete interrupts for the SPI interface
The external interrupt for the AFBR-S50 device

The timer interrupt for the Periodic Interrupt Timer

The DMA transmit complete interrupt for the UART interface

All of these interrupts can be assigned with a preemptive priority: interrupts with a lower priority number have actually a

higher priority.

Of the previously mentioned interrupts, the SPI DMA interrupts have the highest priority. Because the complete indication in
the STM HAL layer for a SPI transmit and receive operation is connected to the SPI receive DMA, the transmit complete
indication should be handled first, and therefore has the highest priority (after crucial system interrupts, which should be left

at the maximum priority 0).

Next, you want to have the indications to read data (external interrupts) or start a new measurement (timer interrupt). Finally,

you have the UART DMA complete interrupt, which is not critical in timing.

After that, you have the system interrupts that are not critical. Here, this is only the SysTick interrupt for the internal clock

with a frequency of 1000 Hz.

Therefore, the following table shows the interrupt configuration.

Broadcom

AFBR-S50-PG100
26

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Table 2: Interrupt Priorities

Interrupt Priority

Critical System Interrupts
SPI DMA Transmit Complete
SPI DMA Receive Complete
External Interrupt

Periodic Interrupt Timer
UART Interrupts

SysTick Timer Interrupt

W 0| WIN|F

NOTE: If you have less interrupt priorities available on your system, it is not required to use such a differentiated interrupt
scheme: External and PIT can share the same priory, UART and SysTick also, and on most platforms, SPI Tx and

Rx interrupts can have the same priority, too.

Step 11. Configuring the Interrupts in the IDE

The configuration in the IDE for these values look like those in the following figure.

Figure 22: Interrupt Priority Configuration in the IDE (1)

E workspace_argus - Device Configuration Tool - STM32CubelDE - O
File Edit MNavigate Search Project Run Window Help

Pinout & Configuration

MNVIC Mode and Configuration

Calegories | A
System Core ﬁ L e o
Priority Group ‘4 bits for pre-emption priority 0 bits f._. | Sort by Premption Priority and Sub Priority
Search (O] Show only enabled interrupts Force DMA channels Interrupts
IWDG
m NVIC Interrupt Table Enabled | Preemption Priority | Sub Priority
RCC MNon maskable interrupt 0 0
Hard fault interrupt 0 0
DS Memory management fault
L]
Pre-fetch fault, memory access fault
Undefined instruction or illegal state
Analog > . . R .
System senice call via SWI instruction
Debug monitar
Timers b d

Pendable request for system semvice
L DMA2 stream3 global interrupt
Comnectiity > i [PendSV_IRan
onnectty DMAZ stream(global interrupt PendSV_IRQn
EXTl line[9:5] interrupts
TIM4 global interrupt
DMAT streamb global interrupt
DMA1 stream6 global interrupt
Middleware > USARTZ global interrupt
Time base: System tick timer

Multimedia >

Computing >

e w2 o oo oo
cC oo oo oo ocoooooo

<] <

O Preemption Priority l:l Sub Priority l:l

il

X

Qidirs- |- @it -Qrig-ifi-fl-oero-|ma [wdices || 8| &

‘5 [Argus_ExampleApp_STM32F&01.ioc 33 = g

Broadcom

AFBR-S50-PG100
27

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

NOTE:

e To enable certain interrupts, you might need to disable the Show only enabled interrupts option on top of the

list to see all available interrupts.

e The NVIC configuration warning that states Preemption priorities have been reset to 0 as FREERTOS is

deselected. can be ignored.

Additionally, to simplify the implementation of the following interrupts, the handlers must be automatically generated and

added to the project.

Figure 23: Interrupt Priority Configuration in the IDE (2)

m waorkspace_argus - Device Configuration Tool - STM32CubelDE - m}
File Edit Mavigaste Search Project Run Window Help
QOINHE B R BB AL OGO |20 [uikaces | | B

& mArgus_ExampIeApp_STMSZFAiO'I.io: et =

Configuration

~ Pinout
NVIC Mode and Configuration

Configuration

¢wmmmp | & Code generation
Enabled interrupt table W Select for init sequence or... Generate IRQ ha... |Call HAL han...

System Core

Mon maskable interrupt O O

Hard fault interrupt O O

WDG Wemory management fault O O
m Pre-fetch fault, memory access f... O O
RCC Undefined instruction or illegal st... O O
System senvice call via SWI instr... O O

WWDG Debug monitor O O
— Pendable request for system ser.._ O = Ll
Time base: System tick timer O

Analog > DMAA stream5 global interrupt O
DMAA stream6 global interrupt O

Timers > EXTI line[9-5] interrupts O
TIN4 global interrupt O

Connectivity > USART2 global interrupt O]
DMAZ2 stream0 global interrupt O]

Multimedia > DMAZ2 stream3 global interrupt]

Computing > Interrupt unmasking ordering table (interrupt init code is moved after all the peripheral init code)
[Rec] wemuptneme | |
Middleware >
gl Er
i

3.6 Code Generation

The final step is now to trigger the code generation function from the API.

Broadcom

AFBR-S50-PG100
28

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Step 12. Setting the Code Generation Options

There are two relevant options for the code generation:

= As we want to adapt a different project, the mai n() function should not be generated automatically, because this would
be conflicting otherwise.

m The hardware initializations should be generated in separate files to identify them more easily.

These settings can be made in the Project Manager tab.

Figure 24: Preventing the Generation of main()

[workspace_argus - Device Configuration Tool - STM32CubelDE - O X
File Edit Source Refactor Mavigate Search Project Run Window Help

AN N S P R R R Ry S PR

p-f-ee-o-dle =
o B e [main.h [g] s2pi.c [§] stm32fdxc h.. [¢ gpio.c [Argus Exampl.] 32 | 736 =5 |5
e

figuration Clock Canfigur mp Praoject Manager i

.| =l

¢Project Setting =]

Project Name =
: |argus_ExampleApp_STM32F401 1

Project Location o
‘C:\UsEra\sI\STM32Cube\DE\wurkSpaEe_argua | =

Application Structure =

‘ﬂd:aﬂced ‘I Do not generate the main[}]

Toolchain Folder Location

Code Generator

Toolchain 7 IDE

STM32CubelDE

¢Linker Settings

Minimum Heap Size 0x200
Minimum Stack Size 0x400

Advanced Settings

+Mcu and Firmware Packag

Mecu Reference
[5TM32F401RETx

Firmware Package Name and Version

‘éThBECUCE FW_F4v1.242 Use latest available version

Broadcom AFBR-S50-PG100

29

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 25: Forcing Separate Initialization Files

+HAL Settings
[Set all free pins as analog (to optimize the power cansumption)
[Enable Full Assert

Advanced Settings
g +Template Setting:

‘ Select a template to generate customized code Settings...

[T workspace_argus - Device Cenfiguration Tool - STM22CubelDE - m] 'S
File Edit Socurce Refactor Mavigate Search Project Run Wmdow Help
(i@ - - R-BiE-&-E-@i-@-i@ Y- IRE
- E oo @ mf\@\%mw
= [€] main.c [mainh [g] s2pic [£] stm32f4xc h... [¢) gpioc | [Argus Exampl... 32 | 3¢ 5
= ’inou tion Clack Configur S 8l
&
¢ Generated fil 2
' Generate peripheral initialization as a pair of "¢/ ' files per peripheral I _E
[0 Backup previously generated files when re-generating &
:: Keep User Code when re-generating ":‘_
Delete previously generated files when not re-generated :-?-.

Step 13. Performing the Code Generation

The code generation can simply be started by saving the configured setup and then confirming the code generation in the

dialog box, or it can also manually triggered by pressing Alt + K.

Figure 26: Confirming the Automatic Code Generation

E Question *

@ Do you want generate Code?

[Remember my decision

Yes | | Mo |

The code generation now creates several files in the Cor e folder.

Broadcom

AFBR-S50-PG100
30

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 27: Generated Files in the IDE

E workspace_argus - Device Configuration Tool - 5TM32Cubel...
File Edit Navigate

@ d

Search Project Run Window Help
'-‘.:'J_\IL-J!t%:"%'ﬂl' "t}'q' L
=

o G |“-:;u|:l: Access

i Project Explorer 23
~ [Argus_ExampleApp_STM32F401
sf Binaries
n Includes
3 API
0 App
r——
v (= Inc
thi dma.h
i gpie.h

bl mainh

ihl spih
i stm32fdox_hal_conf.h
Ih stm32fdox_ith
W tim.h
th usarth
5 Src
[g dma.c
le] gpio.c
L] main.c
.t spi.c
stm32fdux_hal_msp.c
stm32fdux_it.c
Le] syscalls.c
I sysmem.c
ie] system_stm32fdocc
ig] tim.c
Lg usart.c
(&= Startup
S| startup stm32fd01rete.s
Urvers
= Debug
Argus_ExampleApp_STM32F401 Debug.launch
[@] Argus_ExampleApp_STM32F401.ioc
= STM32FA0TRETX_FLASH.Id
= STM3ZFADIRETX_RAM.Id

<

i o | @0 4

A= |

[Argus_ExampleApp_STM32F401/Argus_ExampleApp_STM32F401.icc

m] X

B o0& »

These files contain the configurations shown in the following table.

Table 3: Description of Source Files Generated by the IDE

Path

Functions to Be Called

Description

Core/ Il nc/dnma. h
Core/ Src/dma. c

MX_DMA [ni t ()

DMA initialization for all peripherals (UART and SPI), with
interrupt settings

Core/lnc/gpio.h
Core/ Src/ gpio.c

MX_GPl O I ni t ()

Initialization for all GPIO lines not assigned to other
controllers (chip select and external interrupt), with
interrupt settings for the latter

Corel/ I nc/spi.h
Core/ Src/spi.c

MX_SPI1_Init()

Setup of the SPI controller and the used GPIO lines
operated by the SPI controller (CLK, MISO, MOSI)

Core/lnc/timh
Core/Src/timc

MX_TI M2_I ni t ()
MX_TI M&_I ni t ()
MX_TI MB_I ni t ()

Setup of the timers used for the lifetime counter (LTC) and
the periodic interrupt timer (PIT), including the interrupt
settings for the latter

Core/lnc/usart.h
Core/ Srcl/usart.c

MX_USART2_UART | nit ()

Setup of the UART controller and the used GPIO lines
operated by the UART controller

Broadcom

AFBR-S50-PG100
31

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Table 3: Description of Source Files Generated by the IDE (Continued)

Path

Functions to Be Called

Description

Core/lnc/ main. h
Core/ Src/ main.c

Syst enCl ock_Confi g()

Setup of the board clock configurations

Core/ Src/stnB2f4xx_it.c

MX_DMA_I ni t ()

Generated interrupt handlers for the configured interrupts,
forwarding the interrupts to the STM32 hardware
abstraction layer (HAL)

Corel/ Src/syscalls.c
Cor e/ Src/ sysnmem ¢

Minimum required system calls and system memory calls
to support the C standard

Cor e/ Src/ st mB2f 4xx_hal _nsp. ¢

Internally called function for the hardware abstraction layer
setup.

Cor e/ Src/ syst em st n32f 4xx. ¢

Generated system specific initialization, automatically
called from startup code

Startup/startup_stnB2f401lretx.s

Generated board startup code

Broadcom

AFBR-S50-PG100
32

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Chapter 4. Adapting the Generated Data to the Argus API

The next steps are to create the functions required by the API hardware layer interfaces to satisfy the requirements of the
AFBR-S50 library.

To simplify the process, as much as possible from the reference implementation in the SDK is reused, but without
modification of the original files.

Step 14. Adding the Required Include Paths

To be able to find the include files, they must be set up in the include path. The following table shows the paths that are to
be added.

Table 4: Additional Include Paths

Path Description

C:\ Program Fi |l es (x86)\Broadcom AFBR- S50 SDK\ Devi ce\ Li b\ AFBR- S50\ | ncl ude Path to the API include files
C.\Program Fi |l es (x86)\Broadcom AFBR- S50 SDK\ Devi ce\ Li b\ AFBR- S50\ pl at f orm Path to the platform API files

NOTE: The actual path may change depending on the actual installation directory.

Figure 28: Added Include Paths in the IDE

[CE properties for AFBR_S50_ExampleApp_STM32F401RE [} X
type filter text Paths and Symbols T
Resource

Builders
i ion:| [All confi d ~ ; i
C/C++ Build Configuration:| [All configurations] Manage Configurations...

v C/C++ General
Code Analysis

:>~' Includes # Symbols = Libraries ® Library Paths & Source Location &l References
Documentation

File Types Languages Include directories Add...
Formatter GNU C ' Drivers/CMSIS/Include

Indexer Assembly :“ Drivers/STM32F4xx_HAL Driver/Inc

Language Mappings 1 Core/Inc Delete
Paths and Symbols ' Drivers/CMSIS/Device/ST/STM32F4xx/Include

Preprocessor Include Paths, Macro ; :

CMSIS-SVD Settings “C:\Program Files (x86)\Broadcom\AFBR-550 SDK\Device\Lib\AFBR-550\Include

Project References = C:\Program Files (x86)\Broadcom\AFBR-550 SDK\Device\Lib\platform
Run/Debug Settings

@ The settings are not used by indexer (MBS provider is disabled on ‘Preprocessor Include Paths' page).
[+/] Show built-in values String List Mode: Conjunction + Modify

@ Import Settings.. | % Export Settings...

< > Restore Defaults Apply
? Apply and Close Cancel

Access the project configuration menu by right-clicking on the project in the Project Explorer and selecting Properties.

Broadcom AFBR-S50-PG100
33

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

NOTE: Make sure to select [All configurations] before setting the path.

Step 15. Adding the AFBR-S50 Library
To be able to link against the AFBR-S50 library, it must be added to the build.

First, add the library path similar to the include path.

Figure 29: Added Library Path in the IDE

[EE properties for AFBR_S50_ExampleApp_STM32F401RE u] X

type filter text Paths and Symbols T
» Resource
Builders
3 : | ; . -
v C/C++ Build Conflguratlon[[All configurations]]Manage Configurations...

Build Variables
Environment (% Includes # Symbols = Library Paths @ Source Location & References
Logging P
Settings [= C:\Program Files (x86)\Broadcom\AFBR-550 SDK\Device\Lib\AFBR-S50] Add...
v C/C++ General

» Code Analysis
Documentation Delete
File Types
Formatter

Edit...

Export

Indexer
Language Mappings
E> Paths and Symbols Move Down
Preprocessor Include Paths, Macro
CMSIS-SVD Settings
Project References

Move Up

Run/Debug Settings

@ The settings are not used by indexer (MBS provider is disabled on ‘Preprocessor Include Paths’ page).

[] show built-in values String List Mode: Conjunction + Modify

< > Restore Defaults Apply

7 Apply and Close Cancel

Now, add the library itself.

Broadcom AFBR-S50-PG100
34

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Figure 30: Added AFBR-S50 Library in the IDE

[EE properties for AFBR_S50_ExampleApp_STM32F401RE u] X

type filter text Paths and Symbols

Resource

Builders
i i I i i > 9 -
v C/C++ Build Configuration| [All configurations] Manage Configurations...

Build Variables

Environment = Includes # S@ = Libraries ® Library Paths @ Source Location El References

Logging

Settings [afbrs50_ m4 fpu] Add...
v C/C++ General Edit...

Code Analysis

Documentation

File Types

Formatter

Indexer

Language Mappings

Paths and Symbols

Preprocessor Include Paths, Macro
CM5IS-5VD Settings
Project References
Run/Debug Settings

@ Using relative paths is ambiguous and not recommended. It can cause unexpected effects.

[] show built-in values String List Mode: Conjunction + Modify
9 Il ¥

Restore Defaults Apply

7 Apply and Close Cancel

The library name depends on the actual architecture. In case of STM32F401RE, the Cortex-M4 incl. Hardware
Floating-Point unit is used. Find more details on the different library variants in the MCU Porting Guide > Architecture
Compatibility section in the API Reference Manual.

NOTE: In SDK v1.0.x, only a Cortex-MO library was available. Still all Cortex-Mx variants are supported using the soft
floating-point ABI. See Section A.1, Setting Up Floating-Point ABI for Soft Floating Point Usage.

4.1 IRQ API

The IRQ API is simple and only provides the AFBR-S50 library and the following hardware implementations with a way to
lock all interrupts temporarily.

Step 16. Creation of the IRQ File

The IRQ APl is implemented in a new file, i r g. ¢, in the API folder. This file should be created as an empty source file.

Step 17. Implementing the IRQ Locking

The implementation is simple and does not have many dependencies.

Broadcom AFBR-S50-PG100
35

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Listing 1: File "APl/irg.c"
#i ncl ude <assert. h>
#i ncl ude "nmain. h"

/*! dobal |ock |level counter value. */
static volatile int g_irq_lock_ct;

/*| R Sk S S S S

* @rief Enable IRQ Interrupts

*

* @etails Enabl es IRQ interrupts by clearing the I-bit in the CPSR
* Can only be executed in Privileged nodes.

*

*
@eturn -
***/

voi d | RQ_UNLOCK(voi d)

{
assert(g_irqg_lock_ct > 0);
if (--g_irg_lock_ct <= 0)
{
g_irqg_lock_ct = 0;
__enable_irq();
}
}

/*| Rk kR Sk kR Rk ok S R Rk Sk O R o kS R SRk S o

* @rief Di sable IRQ Interrupts
* @letails Disables IRQ interrupts by setting the I-bit in the CPSR
* Can only be executed in Privil eged nodes.

*

* @eturn -
'k**************************/
void | RQ_LOCK(voi d)

__disable_irq();

g_irqg_l ock_ct ++;

4.2 S2PI API

Step 18. Creation of the S2PI File

The S2PI API is implemented in a new file, s2pi . c, in the API folder. This file should be created as an empty source file.

Step 19. Adding the S2PI Includes

First, the headers declaring the API functions to be implemented are included. This means the API header and the header
for the generated implementation.

Broadcom AFBR-S50-PG100
36

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Listing 2: File "API/s2pi.c" — Include statements

#i ncl ude "dma. h"

#i ncl ude "gpi o. h"

#i ncl ude "spi.h"
#include "driver/irq.h"
#i nclude "driver/gpio.h"
#i ncl ude "driver/s2pi.h"

Step 20. Implementing the S2PI Data Structures
Next, a data structure is defined that holds all the data for one SPI module.

The following information is contained:

= The current status of the device

m The callback function after an SPI transfer

m A parameter for this callback function

The callback function after an external interrupt from the device
A parameter for that callback function

= The alternate mode of the GPIOs for SPI mode

= A mapping of all used logical pins to GPIO pins and ports

The first part is a mapping type for the pins and ports.

Listing 3: File "API/s2pi.c" — SPI GPIO pin mapping

/[*! A structure that holds the napping to port and pin for all SP
typedef struct

{
[*! The GPI O port */
CGPlI O TypeDef * Port;
/[*1 The GPIO pin */
uint32_t Pin;

}

s2pi _gpi o_mappi ng_t;

nodul es.

*/

Broadcom

AFBR-S50-PG100
37

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Then there is the data structure with the parameters mentioned previously.

Listing 4: File "API/s2pi.c" — SPI data structure

[*! A structure to hold all internal data required by the S2PI nodule. */
typedef struct
{

/*! Determines the current driver status. */
vol atile status_t Status;

/*! Determ nes the current S2Pl slave. */
vol atile s2pi _slave t Slave;

/*1 A callback function to be called after transfer/run node is conpleted. */
s2pi _cal | back_t Cal |l back;

[*! A paraneter to be passed to the callback function. */
voi d * Cal |l backDat a;

/*1 A callback function to be called after external interrupt is triggered. */
s2pi _irg_cal | back_t IrqcCall back;

[*! A paraneter to be passed to the interrupt callback function. */
void * lrqCall backDat a;

/*! The alternate function for this SPlI port. */
const uint32_t SpiAlternate;

/[*! The mapping of the GPIO blocks and pins for this device. */
const s2pi _gpio_mapping_t GPICs[S2PI _| RQ+1];

s2pi _handl e_t;

Finally, the SPI settings in this data structure are initialized in an instance containing this data.
NOTE: If multiple devices should be supported, this should be implemented as an array.

The pin names are taken from the included pl at f or mf AFBR- S50_s2pi . h (using dri ver/ s2pi . h). The actual values
can be determined from the generated Cor e/ Sr c/ spi . c file.

Listing 5: File "API/s2pi.c" — SPI data object
s2pi _handle_t s2pi_ = { .SpiAlternate = GPI O_AF5_SPI 1,

LGPIOs = { [S2PI_CLK] ={ GPIOA, GPIOPINS5 },
[S2PI CS] ={ GPIOB, GPIOPIN 6 },
[S2PI_Mosl] ={ GPIOA, GPIOPIN 7 },
[S2PI_ MSO] ={ GPIOA, GPIOPIN6 },
[S2PI IRQ | ={ GPICC, GPIOPIN7 } } };

Step 21. Implementing the S2PI Initialization
Next, the timer initialization routine is implemented. The prototype is found in dri ver/ s2pi . h.

The initialization function calls the generated hardware initializations for the GPIO, DMA, and SPI layers. This guide
assumes that only a single SPI device is attached, so it returns an error if the requested SPI slave identifier is not the first
one. The helper function to set the baud rate (defined as follows) is set to determine the settings for the baud rate.

Broadcom AFBR-S50-PG100
38

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

NOTE: The comments are copied from the prototype in pl at f or M AFBR- S50_s2pi . h.

Listing 6: File "API/s2pi.c" — S2PI Initialization Code

/*| Rk kR Sk kR Rk I R Rk R R Ik kR S R S

* @rief Initializes the GPIO driver and does pin muxing.

* @letails Does actually nothing, as all GPIO pins are initialized in
* S2PI _Init().

* @eturn -

**************7\'*7\'**/

void GPlO Init(void) {}

/*| LR R I I O I R O O

* @brief Initialize the S2Pl nodul e.
* @letails Setup the board as a S2PI naster, this also sets up up the S2PI
B)

pi ns.
* The SPI interface is initialized with the correspondi ng default
* SPI slave (i.e. CS and IRQlines) and the default baud rate.

* @aram defaultSlave The default SPI slave to be addressed right after
* nodul e initialization.
* @aram baudRate_Bps The default SPI baud rate in bauds-per-second.

* @eturn Returns the \link #status_ t status\endlink (#STATUS OK on success).

*******************************'k*'k*'k***l

status_t S2PI _Init(s2pi_slave_t defaultSlave, uint32_t baudRate_Bps)

{

MCGPIO Init();

MXCDVA I nit();

MCSPIL_Init();

if (defaultSlave != S2PI _S1)

return ERROR_S2PI _I NVALI D_SLAVE;

return S2Pl _Set BaudRat e(baudRat e_Bps) ;

}

Step 22. Implementing the SPI Get Status Function

The current status of the SPI connection and operation mode (see the following) can also be queried.

Listing 7: File "API/s2pi.c" — SPI Status and Mode Query

/*| R S S S S R O

* @rief Returns the status of the SPI nodul e.

*

* @eturn Returns the \link #status_t status\endlink:

* - #STATUS_IDLE: No SPI transfer or GPlI O access is ongoing.
* - #STATUS_BUSY: An SPI transfer is in progress.
* - #STATUS S2PI GPI O MODE: The nodule is in GPlIO node.

*******************************'k****************'k****************************/

status_t S2PI _Get Stat us(void)
{

}

return s2pi _. Status;

Broadcom AFBR-S50-PG100
39

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Step 23. Implementing the Helper Functions for the SPI Baud Rate
The baud rate is set or read by helper functions.

As the choice of the baud rate values is limited by the prescaler, the nearest possible value below the requested one is
selected.

Note that a calculation based on the system clock is required. The value starts with the highest possible baud rate and
decreases the prescaler until the baud rate is smaller than the desired rate or the lowest possible baud rate is reached.

The actual calculation depends on the hardware. On the STM32F401, the prescaler is always a power of two by which the
peripheral clock is divided.

Listing 8: File "API/s2pi.c" — Baud Rate setting

/*| R I I b I I S I I S S S I I I I I S I S I S S I S I O kS S S I S S S I S O

* @rief Sets the SPI baud rate in bps.

* @aram baudRate Bps The default SPI baud rate in bauds-per-second.

* @eturn Returns the \link #status_ t status\endlink (#STATUS OK on success).
* - #STATUS_OK on success

* - #ERROR_S2PI _| NVALI D_BAUD_RATE on invalid baud rate val ue.

**/

status_t S2Pl _Set BaudRat e(ui nt 32_t baudRat e_Bps)

{
uint32_t prescaler = 0;
/* Determ ne the nmaximum possi bl e val ue not greater than baudRate_Bps */
for (; prescaler < 8; ++prescaler)
if (SystenCoreC ock >> (prescaler + 1) <= baudRate_Bps)
br eak;
MODI FY_REQE hspi 1. I nstance->CR1, SPI_CRl1_BR, prescaler << SPI_CRl_BR Pos);
return STATUS CK;
}

When the baud rate is read, the real baud rate should be returned, not the requested value.

Listing 9: File "API/s2pi.c" — Baud rate readout

/*| R Sk S S S S S O S

* @rief Cets the current SPI baud rate in bps.
* @eturn Returns the current baud rate.
***/

uint32_t S2PI _Cet BaudRat e(voi d)
{

uint32_t prescaler = (hspil.lnstance->CRlL & SPI_CR1_BR) >> SPI_CRl_BR_Pos;
return SystenCoreC ock >> (prescaler + 1);

Step 24. Implementing the SPI/GPIO Switch
Next, the switching between SPI and GPIO mode for the PINs is implemented.

As the CS (chip select) is already an ordinary GPIO, only the other pins are affected: CLK, MISO, and MOSI. Switching is
does not require too much setup. The mode must be changed from alternate (SPI) mode to push-pull output mode (GPIO).
The SPI settings can be taken from the automatically generated HAL_SPI _Mspl ni t () in the Cor e/ Src/ spi . c file, the
GPIO setting is similar to the CS line setting in MX_GPI O_I ni t () in the Cor e/ Src/ gpi o. c file.

Broadcom AFBR-S50-PG100
40

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Listing 10: File "API/s2pi.c" — Setting the mode on the GPIO lines

/*| R Sk S S S S R O O S

* @rief Sets the node in which the S2Pl pins operate.

* @etails This is a helper function to switch the nodes between SPI and GPI O
* @aram node The gpi o node: GPI O MODE_AF PP for SPI,

* GPI O_MODE_QUTPUT_PP for GPI QO

******************‘k************‘k*‘k*‘k************‘k*‘k*‘k************************/

static void S2Pl _Set GPl Ovbde(ui nt 32_t node)

{
CPIO InitTypeDef GPIOInitStruct;
/* SPI CLK GPIO pin configuration */
GPl O InitStruct.Pin = s2pi _. GPI Gs[S2PI _CLK] . Pi n;
GPI O_InitStruct. Mode = node;
GPIO InitStruct. Pull = GPl O_NOPULL;
GPl O I nitStruct. Speed = GPl O_SPEED_FREQ VERY_HI GH;
GPIO InitStruct. Alternate = s2pi _. Spi Alternate;
HAL GPI O Init(s2pi_.GPICs[S2PI _CLK].Port, &PI O InitStruct);
/* SPI M SO GPI O pin configuration */
GPlO InitStruct.Pin = s2pi _. GPICs[S2PI _M SO . Pi n;
HAL_GPI O Init(s2pi_.CGPICs[S2PI_M SO . Port, &3Pl O InitStruct);
/* SPI MOSI GPIO pin configuration */
GPl O InitStruct. Pin = s2pi _. GPl Gs[S2PI _MOSI] . Pi n;
HAL _GPI O Init(s2pi_.CGPICs[S2PI _MOSI].Port, &GPl O InitStruct);
}
Broadcom AFBR-S50-PG100

a1

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Now, this can be used to implement the capturing of the GPI1Os (switching to GPIO mode). Note that the state is checked if
it is currently STATUS_IDLE (SPI mode) and changed to STATUS_S2PI_GPIO_MODE while the interrupts are locked.

Listing 11: File "API/s2pi.c" — Switching the GPIO mode

*
*
*
*
*

*

{

status_t

@ri ef
@letails

@eturn

/*| kkkhkkhkkkhkhkhkkhkhkhhkhkhhkhhkhhhkhkhhkhkhhdhkhkhhhkhhdhhhdhhhhhkhhhdhkhhhdhhdhhrhkdrhddhkdhkdrhkdkkxrx*%

Captures the S2PI pins for GPlI O usage.

The SPI is disabled (nodul e status: #STATUS S2PI _GPI O MODE) and the
pins are configured for GPIO operation. The GPIO control nust be
rel ease with the #S2PI _Rel easeCGpi oControl function in order to
switch back to ordinary SPI functionality.

Returns the \link #status_t status\endlink (#STATUS_OK on success).

'k**************************/

S2PI1 _Capt ur eGpi oCont rol (voi d)

/* Check if something is ongoing. */

| RQ_LOCK();

status_t

status = s2pi _. Status;

if (status != STATUS | DLE)

{

I RQ_UNLOCK() ;
return status;

}

s2pi . Status = STATUS S2Pl _GPI O MODE;
| RQ_UNLOCK() ;

/* Not e:
HAL_GPI O Wit ePin(s2pi _. GPl Os[S2PI _CLK].Port, s2pi_.GPI Gs[S2PI_CLK].Pin, GPIO PIN SET);

Cl ock nust be H after capturing */

S2PI _Set GPl Ovbde(GPI O_MODE_CQUTPUT_PP) ;

return STATUS CK;

Broadcom

AFBR-S50-PG100
42

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

To switch back to SPI mode, there is the reverse status change.

Listing 12: File "API/s2pi.c" — Switching the SPI mode

/*| Rk Sk kR Rk Ik kS bk Sk R SRR o kS R R b b Sk R R S

* @rief Rel eases the S2PI pins from GPl O usage and switches back to SPI node.
* @etails The GPI O pins are configured for SPlI operation and the GPI O node is
* left. Must be called if the pins are captured for GPIO operation via
* t he #S2PI _Capt ureGpi oControl function.
* @eturn Returns the \link #status_t status\endlink (#STATUS_OK on success).
***/
status_t S2PI _Rel easeGpi oControl (voi d)
{
/* Check if sonething is ongoing. */
I RQ_LOCK();
status_t status = s2pi_. Status;
if (status !'= STATUS_S2PI _GPl O_MODE)
{
I RQ_UNLOCK() ;
return status;
}
s2pi _. Status = STATUS | DLE;
I RQ_UNLOCK() ;

S2PI _Set GPI Ovbde(GPl O_MODE_AF_PP) ;

return STATUS_ OK;

Step 25. Implementing the GPIO Access

GPIO access is required to access the devices’ EEPROM. The EEPROM interface is multiplexed to the SPI pins to reduce
the number of physical lines required. However, the interface that is understood by the EEPROM is not compatible with the
SPI interface and, thus, the interface is emulated in software using GPIO toggling.

NOTE: The timing requirements for the EEPROM interface might require the GPIO access to be slowed down. This can
be achieved by an artificial delay for each GPIO access through the S2PI layer. The default delay is 10 us to
achieve a baud rate of approximately 100 kHz. Because the EEPROM is only read once upon device initialization,
the exact timing is not essential for the measurement performance.

Listing 13: File "API/s2pi.c" — Helper macro for the delay

/*! An additional delay to be added after each GPI O access in order to decrease
* the baud rate of the software EEPROM protocol. Increase the delay if timng
* issues occur while reading the EERPOM
* e.g. Delay = 10 pusec => Baud Rate < 100 kHz */

#i fndef S2PI _GPI O_DELAY_US

#define S2PI _GPlI O DELAY_US 10

#endi f

#i f (S2PI _GPI O_DELAY_US == 0)

#define S2Pl _GPI O_DELAY() ((void)O0)

#el se

#include "utility/tine.h"

#define S2PI _GPl O DELAY() Ti me_Del ayUSec(S2PI _GPI O_DELAY_US)
#endi f

Broadcom AFBR-S50-PG100
43

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

With this delay, reading and writing can be implemented.

Listing 14: File "API/s2pi.c" — Writing pins in GPIO mode
/*! EE R R I R Sk I I R I R R I R I

* @rief Wites the output for a specified SPI pin in GPl O node.

* @letails This function wites the value of an SPI pin if the SPI pins are

* captured for GPIO operation via the #S2Pl _Capt ureGpi oControl previously.
* @aram slave The specified S2PI sl ave.

* @aram pin The specified S2Pl pin.

* @aram value The GPIO pin state to wite (0 = low, 1 = high).

*

@eturn Returns the \link #status t status\endlink (#STATUS OK on success).

******************************'k*'k*'k***l

status_t S2PI _WiteQCpi oPin(s2pi _slave_t slave, s2pi_pin_t pin, uint32_t val ue)
{
/* Check if pinis valid. */
if (pin > S2PI _IRQ || value > 1)
return ERROR | NVALI D_ARGUVENT;

/* Check if in GPIO node. */
i f(s2pi _.Status != STATUS_S2PI _GPI O MODE)
return ERROR_S2PI _| NVALI D_STATE;
HAL_GPI O WitePin(s2pi _.GPICs[pin].Port, s2pi_.GPlIGCs[pin].Pin, value);
S2PI _GPI O DELAY() ;

return STATUS_OK;

Broadcom AFBR-S50-PG100
44

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Reading is similar.

Listing 15: File "API1/s2pi.c" — Reading pins in GPIO mode

/*| Rk Sk kR Rk Ik kS bk Sk R SRR o kS R R b b Sk R R S

* @rief Reads the input froma specified SPI pin in GPlO node.
* @letails This function reads the value of an SPI pin if the SPI pins are

* @aram slave The specified S2PI sl ave.
* @aram pin The specified S2Pl pin.
* @aram value The GPIO pin state to read (0 = low, 1 = high).
* @eturn Returns the \link #status_ t status\endlink (#STATUS OK on success).
***/
status_t S2Pl _ReadCGpi oPi n(s2pi _slave_t slave, s2pi_pin_t pin, uint32_t * val ue)
{

/* Check if pinis valid. */

if (pin > S2PI _IRQ || !value)

return ERROR | NVALI D_ARGUVENT;

/* Check if in GPIO node. */
i f(s2pi_.Status != STATUS_S2PI _GPl O_MODE)
return ERROR_S2PI _I NVALI D_STATE;
*val ue = HAL_GPI O ReadPi n(s2pi _. GPI Cs[pin].Port, s2pi_.CGPICs[pin].Pin);
S2PI _GPI O_DELAY();

return STATUS_ OK;

* captured for GPI O operation via the #S2Pl _Capt ureGpi oControl previously.

Step 26. Implementing the CS Cycling

To cancel integration, the SPI CS line must be cycled. The function performing this is implemented here. Again, it checks if

the device is currently idle.

NOTE: The SPI _W it eGi oPi n() function cannot be reused, because it implements an additional artificial delay, and
only works in GPIO mode. You do not need to switch to GPIO mode here, because the CS line is set up as GPIO
anyway. If, in your implementation, the CS line is controlled by the SPI, you must switch it to GPIO mode first and

back afterwards.

Broadcom

AFBR-S50-PG100
45

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Listing 16: File "API/s2pi.c" — Performing the SPI CS cycling

/*| R Sk S S S S R O O S

* @rief Cycles the chip select line.

@letails In order to cancel the integration on the ASIC, a fast toggling
of the chip select pin of the corresponding SPI slave is required.
Therefore, this function toggles the CS fromhigh to | ow and back.
The SPI instance for the specified S2Pl slave nust be idle,
ot herwi se the status #STATUS BUSY is returned.

@aram slave The specified S2Pl sl ave.

* @eturn Returns the \link #status_ t status\endlink (#STATUS OK on success).

***/

status_t S2PlI _Cycl eCsPi n(s2pi _slave_t sl ave)

*
*
*
*
*
*

{
/* Check the driver status. */
| RQ_LOCK();
status_t status = s2pi_. Status;
if (status != STATUS_ | DLE)
{
I RQ_UNLOCK() ;
return status;
}
s2pi _. Status = STATUS_BUSY;
I RQ_UNLOCK() ;
HAL_GPI O WitePin(s2pi _. CGPICs[S2PI _CS].Port, s2pi_.GPlI Os[S2PI _CS].Pin, GPlIO_PIN _RESET);
HAL_GPI O WitePin(s2pi _.CGPICs[S2PI _CS]. Port, s2pi_.GPl Os[S2PI _CS].Pin, GPIO_PIN_SET);
s2pi _. Status = STATUS | DLE;
return STATUS OK;
}

Step 27. Implementing the SPI Transfer Start

As previously designed, the SPI transfer is performed by DMA. Therefore, the SPI transfer is only started with the transfer
function, and the completion is indicated by an interrupt.

Here, the function to start the SPI transfer is implemented. First, the arguments are checked and the slave. The callback and
its data are stored for the interrupts later. Then the SPI CS signal is asserted (set low) and the transfer is started.

NOTE: If the data should be transmitted only, there is no valid receive buffer, so a different function must be triggered to
transmit only.

CAUTION! Some of the SPI transmissions are very short, so the completion interrupt comes early with fast SPI speeds. If
an interrupt, even a low-priority interrupt like SysTick, delays the setup marginally, the functions
HAL SPI _Transmit DMA() or HAL_SPI _Transmi t Recei ve_ DMA() may not have unlocked the internal
structure in the STM32 HAL before the completion interrupt occurs. Therefore, all interrupts are locked until
these functions return by using the | RQ _Lock() and I RQ_Unl ock() methods. This may also be necessary
with other vendors' implementations.

Broadcom AFBR-S50-PG100
46

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Listing 17: File "API/s2pi.c" — Starting the SPI transfer

* @rief
* @letails

* @ar am
* @aram
* @aram

* @ar am
* @ar am

* @aram

* @eturn

/*| R Sk S S S S R O O S

Transfers a single SPI frame asynchronously.

Transfers a single SPI frame in asynchronous manner. The Tx data
buffer is witten to the device via the MoSI |ine.

Optionally the data on the MSO line is witten to the provided
Rx data buffer. If null, the read data is dism ssed.

The transfer of a single frane requires to not toggle the chip
select line to high in between the data frane.

An optional callback is invoked when the asynchronous transfer
is finished. Note that the provided buffer must not change while
the transfer is ongoing. Use the slave paraneter to determ ne
the correspondi ng slave via the given chip select I|ine.

sl ave The specified S2PI sl ave.
txData The 8-bit values to wite to the SPI bus MOSI |ine.
rxData The 8-bit values received fromthe SPI bus M SO |Iine

(pass a null pointer if the data don't need to be read).
frameSi ze The nunber of 8-bit values to be sent/received.
cal | back A callback function to be invoked when the transfer is

finished. Pass a null pointer if no callback is required.
cal | backData A pointer to a state that will be passed to the
cal | back. Pass a null pointer if not used.

Returns the \link #status_t status\endlink:

- #STATUS_OK: Successfully invoked the transfer.

- #ERROR_| NVALI D_ARGUMENT: An invalid paraneter has been passed.

- #ERROR _S2PI | NVALI D SLAVE: A wong slave identifier is provided.

- #STATUS BUSY: An SPI transfer is already in progress. The
transfer was not started.

- #STATUS_S2PI _GPI O_MODE: The nodule is in GPIO node. The transfer

was not started.

***/

status_t S2PlI_TransferFrane(s2pi _slave t spi_slave,

uint8 t const * txData,
uint8_ t * rxData,

size_t franeSize,

s2pi _cal | back_t call back,
voi d * cal | backDat a)

{

/* Verify argunents. */

if (!txData || frameSize == 0 || frameSize >= 0x10000)
return ERROR_I NVALI D_ARGUMENT;

/* Check the spi slave.*/

if (spi_slave = S2PI _S1)
return ERROR _S2PI | NVALI D_SLAVE;

Broadcom AFBR-S50-PG100

a7

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

[* Check the driver status, lock if idle. */
| RQ_LOCK();
status_t status = s2pi_. Status;
if (status != STATUS | DLE)
{
| RQ_UNLOCK() ;
return status;
}
s2pi _. Status = STATUS_BUSY;
I RQ_UNLOCK() ;

/* Set the callback information */
s2pi _. Cal I back = cal | back;
s2pi _. Cal | backDat a = cal | backDat a;

/* Manual ly set the chip select (active low */
HAL_GPI O Wi tePin(s2pi _. GPI Gs[S2PI _CS] . Port, s2pi_. GPl Cs[S2PI _CS]. Pin, GPl O _PI N_RESET);

HAL_St at usTypeDef hal _error;

/* Lock interrupts to prevent conpletion interrupt before setup is conplete */
| RQ_LOCK() ;
i f (rxData)
hal _error = HAL_SPI _Transm t Recei ve_DVMA(&spi 1, (uint8_t *) txData, rxData, (uintl1l6_t)
franmeSi ze) ;
el se
hal _error = HAL_SPI _Transmni t _DVA(&hspi 1, (uint8_t *) txData, (uintl6_t) franeSize);
I RQ_UNLOCK() ;

if (hal _error !'= HAL_CK)
return ERROR FAIL;

return STATUS_ OK;

Step 28. Implementing the SPI Transfer Completion

The completion of the SPI transfer is signaled by DMA interrupts. These run into callback functions that must be defined
here. The names and details are specific to the target platform.

Here, there are two different callbacks according to the initiated transfer (transmit only and transmit/receive). However, in
the latter case, two DMA interrupts are actually received, but only the receive interrupt triggers the callback. Because the
callback into the AFBR-S50 library can trigger the next transfer within the interrupt, you must ensure that both interrupts are
actually handled, or setting up the next transfer could fail. To achieve this, the real callback is only triggered if the transmit
interrupt was already handled. Otherwise, the transmit callback is set up to trigger the final callback.

The real callback is triggered using a common helper function that also features a status. In addition, it resets the SPI CS
signal (high) to indicate the end of the transfer.

Broadcom AFBR-S50-PG100
48

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Listing 18: File "API/s2pi.c" — Triggering the provided callback function

/*| R Sk S S S S R O O S

* @rief Triggers the call back function with the provi ded status.

* @letails It first checks if a callback function is present,

* otherwise it returns i medi ately.

* The cal | back function is reset to 0, and nust be set up again
* for the next transfer, if required.

* @ar am status The status to be provided to the callback funcition.
* @eturn Returns the status received fromthe call back function

*********************************'k**l

static inline status_t S2PI_Conpl eteTransfer(status_t status)

{
s2pi _. Status = STATUS | DLE;
/* Deactivate CS (set high), as we use GPIO pin */

/* Invoke callback if there is one */
if (s2pi_.Callback !'= 0)

HAL_GPI O Wit ePin(s2pi . GPl Os[S2PI _CS].Port, s2pi _.GPl Os[S2PI _CS].Pin, GPIOPIN SET);

{
s2pi _cal | back_t cal I back = s2pi_. Cal | back;
s2pi _. Cal | back = 0;
status = call back(status, s2pi_. Call backDat a);

}

return status;

}
Broadcom AFBR-S50-PG100

49

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Based on this, the callbacks from the interrupts can be implemented.

Listing 19: File "API/s2pi.c" — Implementation of the SPI completion callbacks

/**

* @rief Tx Transfer conpleted call back.
* @aram hspi pointer to a SPI_Handl eTypeDef structure that contains

* the configuration information for SPI nodul e.
* @etval None
*/

voi d HAL_SPI _TxCpl t Cal | back(SPI _Handl eTypeDef *hspi)

{
S2PI _Conpl et eTr ansf er (STATUS_OK) ;
}
/**
* @rief DVMA SPI transmit receive process conplete callback for del ayed transfer.
* @aram hdnma pointer to a DMA Handl eTypeDef structure that contains
* the configuration information for the specified DVA nodul e.
* @etval None
*/
voi d SPI _DMATransmi t Recei veCpl t Del ayed(DVA_Handl eTypeDef *hdma)
{

Derogati on M SRAC2012-Rul e-11.5 */
HAL_SPI _TxCpl t Cal | back(hspi);

SPI _Handl eTypeDef *hspi = (SPI _Handl eTypeDef *)(((DVA Handl eTypeDef *)hdna)->Parent);

/*

}
/**

* @rief Tx Transfer conpleted call back.

* @aram hspi pointer to a SPlI_Handl eTypeDef structure that contains

* the configuration information for SPl nodul e.

* @etval None

*/
voi d HAL_SPI _TxRxCpl t Cal | back(SPI _Handl eTypeDef *hspi)
{

/* Note: This interrupt callback is always i nvoked by the RXinterrupt fromthe HAL. However, the
* order of RX and TX is not specified on the device. Cccasionally, the RX interrupt occurs before
* the TX interrupt which neans the SPI transfer is not yet conpletely finished upon the occurrence
* of the RX interrupt. Thus, the start of a new SPI transfer may fail, since the AFBR- S50 API
* starts it right fromthe interrupt call back function.
* |n order to overcone the feature, the invocation of the API callback is schedul ed to whatever | RQ
* conmes l|ast: */

if (hspi->hdmat x->Lock == HAL_UNLOCKED) /* TX Interrupt already received */
HAL_SPI _TxCpl t Cal | back(hspi);
else /* There is still the TX DVA Interrupt we have to wait for */
hspi - >hdmat x- >Xf er Cpl t Cal | back = SPI _DMATransni t Recei veCpl t Del ayed;
}
Broadcom AFBR-S50-PG100

50

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Step 29. Implementing the SPI Transfer Abort

The SPI transfer must also be able to be aborted before itis done. If no transfer is in progress, this is not an error, but nothing
needs to be aborted.

Listing 20: File "API/s2pi.c" — Aborting the SPI transfer

/*| R Sk kR Sk R Rk Ik R R Rk S R S o kR R O R

* @rief Term nates a currently ongoi ng asynchronous SPI transfer.

* @letails When a callback is set for the current ongoing activity, it is

* i nvoked with the #ERROR_ABORTED error byte.

* @eturn Returns the \link #status_t status\endlink (#STATUS_OK on success).

**************‘k**/

status_t S2PI _Abort (voi d)

{
status_t status = s2pi _. Status;
/* Check if something is ongoing. */
i f(status == STATUS | DLE)
{
return STATUS CK;
}
/* Abort SPI transfer. */
i f(status == STATUS_ BUSY)
{
HAL_SPI _Abort (&spi 1);
}
return STATUS_ OK;
}

The callback function is triggered from the SPI abort callback.

Listing 21: File "API/s2pi.c" — Triggering the callback function on abort
/ * %
* @rief SPI Abort Conplete call back.
* @aram hspi SPI handl e.
* @etval None

*/
voi d HAL_SPI _Abort Cpl t Cal | back(SPI _Handl eTypeDef *hspi)
{
S2PI _Conpl et eTr ansf er (ERROR_ABORTED) ;
}
Broadcom AFBR-S50-PG100

51

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Step 30. Implementing the SPI Transfer Error Handling

In case of an error, the callback function must be notified also. This is done from the SPI error callback.

Listing 22: File "API/s2pi.c" — Triggering the callback function on error

/**
* @rief SPl error call back.
* @aram hspi pointer to a SPlI_Handl eTypeDef structure that contains
* the configuration information for SPl nodul e.
* @etval None
*/

voi d HAL_SPI _Error Cal | back(SPI _Handl eTypeDef *hspi)

{

}

S2PI _Conpl et eTr ansf er (ERROR_FAI L) ;

Step 31. Implementing the External Interrupt Handling
Finally, the external interrupt used by the AFBR-S50 device to indicate data must be implemented.

First, the callback function in case of this interrupt needs to be able to be set up.

Listing 23: File "API/s2pi.c" — Preparing the external interrupt callback

/*| EE I I I b I I S I S S I I I S I I S I S S I I I S S S I S I I O S I I S

* @rief Set a callback for the GPIO IRQ for a specified S2Pl sl ave.

@aram slave The specified S2PI sl ave.

@aram call back A callback function to be invoked when the specified
S2Pl sl ave I RQ occurs. Pass a null pointer to disable
the cal | back.

@aram call backData A pointer to a state that will be passed to the
cal | back. Pass a null pointer if not used.

@eturn Returns the \link #status_t status\endlink:
- #STATUS_OK: Successfully installation of the call back.
- #ERROR_S2PI _I NVALI D_SLAVE: A wrong slave identifier is provided.

*
*
*
*
*
*
*
*
*
*
*
***/
status_t S2PI _Set|rqgCal | back(s2pi _slave_t sl ave,
s2pi _irq_call back t call back,

voi d * cal |l backDat a)

{
s2pi _.lrqCal | back = cal |l back;
s2pi _.lrqCal | backData = cal | backDat a;
return STATUS CK;
}
Broadcom AFBR-S50-PG100

52

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Then, the possibility of reading the next interrupt line must be implemented.

Listing 24: File "API/s2pi.c" — Readout of the external interrupt status

/*| Rk kR Sk kR Rk I R Rk R R Ik kR S R S

* @brief Reads the current status of the |RQ pin.
@letails In order to keep a low priority for GPlO I RQs, the state of the
I RQ pin nust be read in order to reliable check for chip tineouts.

*

*

*

* The execution of the interrupt service routine for the data-ready
* interrupt fromthe corresponding GPlO pin mght be del ayed due to
* priority issues. The del ayed execution m ght disable the tineout

* for the eye-safety checker too | ate causing fal se error nessages.
* In order to overcone the issue, the state of the I RQ GPl O input

* pinis read before raising a tinmeout error in order to check if

* the device has already finished but the IRQis still pending to be
* execut ed!

* @aram slave The specified S2PI sl ave.
* @eturn Returns 1Uif the IRQ pin is high (IRQ not pending) and OU if the
* devices pulls the pin to |low state (I RQ pending).

***/

uint32_t S2Pl _Readl rgPi n(s2pi _slave_t slave)
{

}

return HAL_GPlI O_ReadPi n(s2pi _. GPI Gs[S2PI I RQ . Port, s2pi _.GPlI Os[S2PI _IRQ . Pin);

Finally, the callback function must be set up.

Listing 25: File "API/s2pi.c" — Implementation of the external interrupt callback
/ * %
* @rief EXTlI |ine detection call backs.
* @aram GPIO Pin Specifies the pins connected EXTI |ine
* @etval None

*/

voi d HAL_GPI O EXTI _Cal | back(uint16_t GPlI O_Pin)

{
if (GPIOPin == s2pi _.GPICs[S2PI _IRQ .Pin & s2pi _.IrqCal |l back)
{

s2pi _.lrqcCal | back(s2pi _.IrqgCall backDat a) ;

}

}

With this setup, the S2PI module is complete.
4.3 Timer API
Now, the API interface must be implemented.

Step 32. Creation of the Timer File

The timer API is implemented in a new file, ti mer . c, in the API folder.

Broadcom AFBR-S50-PG100
53

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Step 33. Adding the Timer Includes

First, the headers declaring the API functions to be implemented are included. This means the API header and the header
for the generated implementation.

Listing 26: File "APl/timer.c" — Include statements

#include "timh"
#include "driver/tinmer.h"

Step 34. Implementing the Timer Initialization
Next, the timer initialization routine is implemented. The prototype is found in dri ver/ti mer. h.

It calls the automatic hardware initialization for each timer.

Listing 27: File "APl/timer.c" — Timer initialization

/*| Rk kR Sk kR Rk ok kR Rk R R S S R R kR

* @rief Initializes the tiner hardware.
* @eturn -

***/

voi d Timer_Init(void)

{
/[* Initialize the tiners, see generated main.c */
MCTIEMR_ I nit();
MCTIMA_Init();
MCTIMB_Init();
/[* Start the tinmers relevant for the LTC */
HAL_TI M Base_Start (&hti n);
HAL_TI M Base_Start (&htinb);
}

Step 35. Implementing the LTC Readout

The readout of the LTC timer is implemented. The prototype is found in pl at f or m AFBR- S50_t i nmer . h, included from
driver/tiner.h.

It reads both chained timers and returns the value, possibly looping if a counter wraparound might have occurred.

Broadcom AFBR-S50-PG100
54

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Listing 28: File "API/timer.c" — Lifetime counter readout

/*| R Sk S S S S R O O S

* @rief btains the lifetine counter value fromthe tiners.
*

* @letails The function is required to get the current tine relative to any

* point in tine, e.g. the startup tinme. The returned values \p hct and
* \p Ict are given in seconds and nicroseconds respectively. The current
* el apsed tinme since the reference tinme is then cal culated from

*

* t _now [usec] = hct * 1000000 psec + lct * 1 psec

*

* @aram hct A pointer to the high counter value bits representing current

* tinme in seconds.

* @aram |ct A pointer to the | ow counter value bits representing current

* time in mcroseconds. Range: 0, .., 999999 usec

* @eturn -

'k**************************/

voi d Timer_Get CounterValue(uint32 t * hct, uint32_t * lct)

{
/* The | oop nakes sure that there are no glitches
when the counter waps between htinR and htn2 reads. */
do {
*lct = _ HAL_TI M GET_COUNTER(&ht i n2) ;
*hct = __ HAL_TI M GET_COUNTER(&ht i nb) ;
}
while (*lct > __ HAL_TI M GET_COUNTER(&hti nR));
}

Step 36. Implementing the PIT Start/Stop

The PIT timer can be started and stopped by the appropriate API functions. The callback parameter and the period are
stored. If a running timer is enabled with the same period, nothing should happen.

If the timer interval does not fit into the 16-bit timer with microsecond granularity, the prescaler is used to reduce the
granularity and the period is reduced.

Broadcom AFBR-S50-PG100
55

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Listing 29: File "APl/timer.c" — Starting and stopping the PIT

/*]

[*!

{

Storage for the call back parameter */
static void * callback_param;

Timer interval in mcroseconds */
static uint32_t period_us_;

/*| EE I I b I I S I I S S I I I S I S I S I S S I I S I

@ri ef
@letail s

@ar am
@ar am

@eturn

*******************************'k*'k*'k***l

status_t Timer_Start(uint32_t period, void * param
cal | back_param_ = param

if (period == period_us_)
return STATUS OK;

period_us_ = period;
uint32_t prescal er = SystenCoreC ock / 1000000V

whi | e (period > OxFFFF)

{

period >>= 1U,
prescal er <<= 1U,

}

assert (prescal er <= 0x10000U);

/* Set prescal er and period val ues */
__HAL_TI M SET_PRESCALER(&hti m4, prescaler - 1);
__HAL_TIM SET_AUTORELQAD(&htim, period - 1);

/* Enable interrupt and tiner */
__HAL_TIMENABLE_I T(&htinm4, TIMIT_UPDATE);
__HAL_TI M ENABLE(&htimi);

return STATUS_OK;

Starts the tiner for a specified callback paraneter.

Sets the call back interval for the specified paraneter and starts

the timer with a newinterval. If there is already an interval wth

the given paraneter, the tiner is restarted with the given interval.

Passing a interval of O disables the tiner.

dt _mi croseconds The cal |l back interval in mcroseconds.

param An abstract paraneter to be passed to the callback. This is
also the identifier of the given interval.

Returns the \link #status_ t status\endlink (#STATUS OK on success).

Broadcom

AFBR-S50-PG100
56

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

/*| LR I kO O R O O R I kI O O O

* @rief Stops the timer for a specified callback paraneter.

* @etails Stops a cal l back interval for the specified paraneter.

* @ar am param An abstract paraneter that identifies the interval to be stopped.
* @eturn Returns the \link #status_ t status\endlink (#STATUS OK on success).

*******************************'k***l

status_t Tinmer_Stop(void * param
{

period_us_ = 0;
cal | back_param_= 0;

/* Disable interrupt and tinmer */
__HAL_TIMDI SABLE_| T(&htim4, TIM.IT_UPDATE);
__HAL_TI M ENABLE(&htimi);;

return STATUS_OK;
}

/*| LR R I Sk O O kO O O o

* @rief Sets the timer interval for a specified callback paraneter.
@etails Sets the callback interval for the specified paraneter and starts

*

* the timer with a newinterval. If there is already an interval with
* the given paraneter, the tiner is restarted with the given interval.
* If the sane tine interval as already set is passed, nothing happens.
* Passing a interval of O disables the tiner.

* @aram dt_mcroseconds The call back interval in mcroseconds.

* @aram param An abstract paraneter to be passed to the callback. This is
* al so the identifier of the given interval.

* @eturn Returns the \link #status_ t status\endlink (#STATUS OK on success).
***/

status_t Tinmer_Setlnterval (uint32 t dt_m croseconds, void * param

{
}

return dt_mcroseconds ? Tinmer_Start(dt_m croseconds, param : Tinmer_Stop(parany;

Step 37. Implementing the PIT Interrupt Handling

Finally, the interrupt caused by the expired PIT timer is handled, and the callback function is triggered, if defined.

Broadcom AFBR-S50-PG100
57

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Listing 30: File "APl/timer.c" — PIT interrupt handling

/*1 Call back function for PIT timer */
static tiner_cb t tinmer_call back_;

/*| LR I I o S I O S R I kI O I

* @rief Installs an periodic tinmer callback function.

* @letails Installs an periodic tinmer callback function that is invoked whenever
* an interval elapses. The callback is the same for any interval,
* however, the single intervals can be identified by the passed
* par anet er.
* Passing a zero-pointer renoves and di sabl es the call back.
* @aram f The tiner callback function.
* @eturn Returns the \link #status_t status\endlink (#STATUS _OK on success).
***/
status_t Timer_SetCall back(timer_cbh_ t f)
{
timer_call back_ = f;
return STATUS OK;
}
/**

* @rief Period elapsed callback in non-blocking node
* @aram htim TI M handl e
* @etval None

*/

voi d HAL_TI M Peri odEl apsedCal | back(Tl M Handl eTypeDef *htimn

{
[* Trigger callback if the interrupt belongs to TIMA and there is a callback */
if (htinF=&htim && tiner_call back)
{

timer_cal |l back_(cal | back_param);

}

}

4.4 Optional: UART API
Optionally, the UART interface can be implemented now.

Step 38. Creation of the UART File

The timer APl is implemented in a new file, uart . ¢, in the API folder.

Step 39. Adding the UART Includes

First, the headers declaring the API functions to be implemented are included. This means the API header and the header
for the generated implementation.

Broadcom AFBR-S50-PG100
58

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Listing 31: File "APl/uart.c" — Include statements

#i ncl ude "dma. h"
#i ncl ude "usart.h"
#include "driver/uart.h"

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <stdarg. h>

Step 40. Defining the UART Variables

Now there are several variables to be defined:
= An indication if a transfer is ongoing
= A buffer for formatting the output message
m A callback function with a parameter

All of these can be static variables.

Listing 32: File "APl/uart.c" — UART variable definitions

/*! The busy indication for the uart */
static volatile bool isTxBusy_ = fal se;

[*! The buffer for the uart print */
static uint8 t buffer_[1024];

/*! The cal |l back for the uart */
static uart _tx_callback_t txCallback_ = 0;

/*! The call back state for the uart */
static void * txCall backState_ = 0;

Step 41. Implementing the UART Initialization

The UART initialization is completely generated in the Cor e/ Sr ¢/ usart . c file and only needs to be called; however, as
the UART uses DMA, it also must be initialized first.

Listing 33: File "APl/uart.c" — UART initialization

/*| R S S S S R O

* @rief Initialize the Universal Asynchronous Receiver/Transmtter
* (UART or LPSCI) bus and DVA nodul e
* @aram -

* @eturn Returns the \link #status_t status\endlink (#STATUS_OK on success).

‘k*‘k*‘k**********************/

status_t UART_Init (void)

{
MX_DVA T nit();
MX_USART2_UART_Init();
return STATUS OK;
}
Broadcom AFBR-S50-PG100

59

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Step 42. Implementing the UART Send Operation

Now you can implement the transmission of the data using DMA. If the line is still busy, you can skip the transfer.

Listing 34: File "APl/uart.c" — UART send operation

/*| LR I I O O R O O kO

* @rief Wites several bytes to the UART connecti on.

* @aram txBuff Data array to wite to the uart connection

* @aram txSize The size of the data array

* @aram f Callback function after tx is done, set O if not needed;
* @aram state Optional user state that will be passed to call back
* function; set 0 if not needed.

* @eturn Returns the \link #status_t status\endlink:

* - #STATUS_OK (0) on success.

* - #STATUS_BUSY on Tx |ine busy
* - #ERROR NOT | NI TI ALl ZED

* - #ERROR | NVALI D_ARGUVENT

'k**************************/

status_t UART_SendBuffer(uint8 t const * txBuff, size t txSize, uart_tx callback t f, void * state)

{
/* Verify arguments. */
if('txBuff || txSize == 0)
return ERROR | NVALI D_ARGUVENT;

if (isTxBusy_)
return STATUS_BUSY;

/* Set Tx Busy Status. */

i STXBusy_ = true;

txCal | back_ = f;

txCal | backState_ = state;

HAL_UART_Transnit _DVA(&wuart2, (uint8_t *) txBuff, txSize);

return STATUS CK;

Step 43. Implementing the UART Send Completion

In the callback after the transmission, the status is set to idle again, and the requested callback is called, if there is one.

Broadcom AFBR-S50-PG100
60

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Listing 35: File "APl/uart.c" — UART send completion
/**
* @rief Tx Transfer conpl eted call backs.
* @aram huart Pointer to a UART Handl eTypeDef structure that contains
* the configuration information for the specified UART nodul e.
* @etval None
*/
voi d HAL_UART_TxCpl t Cal | back(UART_Handl eTypeDef *huart)
{
i sTxBusy_ = fal se;
status_t status = huart->gState == HAL_UART_STATE ERROR ? ERROR FAIL : STATUS (X;
if (txCallback_)
{
txCal | back_(status, txCallbackState_);
}
}

Step 44. Implementing the Formatted Output Using print()

To be able to send data from the example application, the pri nt () function is implemented to send the data over the UART
interface.

Listing 36: File "APl/uart.c" — UART formatted output

/*| R Sk S S S I S S S S S

* @rief printf-like function to send print nessages via UART.
*

* @letails Defined in "driver/uart.c" source file.

*

Open an UART connection with 115200 bps, 8Nl, no handshake to
receive the data on a conputer.

@aram fnt_s The usual printf paraneters.

* * * * *

* @eturn Returns the \link #status_t status\endlink (#STATUS _OK on success).

**********************‘k*‘k*‘k*‘k‘k*‘k*‘k*‘k***/

status_t print(const char *fnt_s, ...)
{
va_list ap;
va_start(ap, fnt_s);
int len = vsnprintf((char *) buffer_, sizeof(buffer_), fnm_s, ap);
va_end(ap);
if (len < 0)
return ERROR FAI L;

UART_SendBuffer(buffer_, len, 0, 0);

return STATUS_ OK;
}

#undef UART_Pri nt

Broadcom AFBR-S50-PG100
61

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

45 Board API

The Board API implements the remaining board initialization that is not related to the previous devices.

Step 45. Creation of the Board File

The Board APl is implemented in a new file, boar d. c, in the API folder. This file should be created as an empty source file.

Step 46. Implementing the Board File

The implementation is simple: The clock initialization is mapped to the automatically generated function, and the COP
implementation (watchdog) is omitted.

Listing 37: File "APl/board.c" — Clock Initialization

#i ncl ude "argus. h"
#i ncl ude "board/ cl ock_config. h"
#i ncl ude "driver/cop.h"

extern void Systent ock_Config(void);

/* Initialize the board with clocks. */
voi d BOARD_C ockl nit (voi d)
{
Syst enCl ock_Config();
return STATUS CK;
}

/* No watchdog installed */
voi d COP_Di sabl e(void) {}

Broadcom AFBR-S50-PG100
62

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Chapter 5: Running the Example Application

5.1 Creating the Example Application

The example application contains a periodic readout of the AFBR-S50 with evaluation of the data in a single file and is a
starting point for individual development.

If the optional UART interface is implemented, it can output the calculation result over the serial line emulation, and a terminal
with appropriate settings can be used to receive the data.

Running the example application is not difficult after the previous preparation:

Step 47. Copying the Example Application

First, the example application code is copied from the source folder of the SDK into the App/ exanpl e. c file. The file is
found at the following location:

C.\Program Fi |l es (x86)\Broadcom AFBR- S50 SDK\ Devi ce\ Li b\ exanpl e. ¢

NOTE: The actual path may change depending on the actual installation directory.
The IDE then automatically detects the new file; otherwise, restart the IDE to force detection.

Figure 31: Copied Application File in the IDE

Step 48. Compiling and Running the Example Application

With all the preparations performed in the previous steps, the example application is ready to compile and run with no
modification.

To compile it, click the build icon.

Broadcom AFBR-S50-PG100
63

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 32: Building the Example Application in the IDE

[workspace_argus - Argus_ExampleApp_STM32F401/App/main.c - STM32CubelDE - u] X
File Edit Source Refactor Navigate Search Project Run Window Help
QDU B R E R BV AN-H GG | [| s @I
| Build 'Debug’ for project 'Argus_ExampleApp_STM32F407" |
" i a8

The compilation should be successful with no errors.
To run the application, select debugging, which automatically transfers the build.

Figure 33: Debugging the Example Application in the IDE

m workspace_argus - Argus_ExampleApp_STM32F401/App/main.c - STM32CubelDE

O X
File Edit Source Refactor Mavigate Search Project Run Window Help

GG B R G RRi® Y AU e 0 [tk | g BRI
| Debug Argus_ExampleApp_STM32F401 Debug (already running) i = i
NOTE:

e The device must be attached to a USB port.
e The project must be properly selected in the Project Explorer to start the debugging.

The debugger interface must be selected the first time.

Figure 34: Select the Debugger Interface

D Debug s] x
|

Select a way to debug 'Argus_ExsmpleApp STMI2FA0IRE:
I =
| | Eltocst C/Ce + Appiication
| | CD5M32 Cortex-M C/C= Application

Description
$TM32 Conex-M C/C+ - Application

| @ o || cmen

Use the default debug configuration by clicking OK.

Broadcom AFBR-S50-PG100

64

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Figure 35: Debug Configuration

[Edit Configuration m} X

Edit launch configuration properties ﬁ\'

Name: [Jargus_ExampleApp_STM32FA01RE Debug |
[E] Main| %5 Debugger | = Startup | & Source| =] Common

C/C++ Application:

| DebugArgus_ExampleApp_STM32F401RE it Search Project.. Browse...
Project:
| Argus_ExampleApp_STM3ZF401RE Browse...

Build (if required) before launching

Build Configuration: | Select Automatically v
O Enable auto build) Disable aute build
(®) Use workspace seftings Configure Workspace Settings...

Revert Apply

After the debugger is started, the application is suspended at the beginning of the main function. Unless you want to step
through the code, run it by clicking the resume symbol.

Figure 36: Running the Example Application in the IDE

E workspace_argus - Argus_ExampleApp_STM32F401/App/main.c - STM32CubelDE - m} x
File Edit Source Refactor Mavigate Search Project Run Window Help
Sl w [B nmte eI @by |Eide - Q-i®m & - 4
&~ & - Treamen | 2] @ [uickaccess || g5 | 0 [46
5 [0 Argus_ExampleApp_STM32F401.ioc [g mainc 53 = & =
15 835 /*! A 0 x=
B 3 - @brief Application entry point. %
“ [@details The main function of the program, called after startup code &
¢ This function should never be exited. =
* @return it
/ &r
int main(void) o
-]
/* The APT module handle that contains all data definitions that is -
* required within the API module for the correspeonding hardware device. e
* Every call to an API function requires the passing of a pointer to this =]
* data structure. */ 0
argus_hnd_t * hnd = Argus_CreateHandle(); vl
if (hnd 2) Y
i nd ==
{ ?
/* Error ; wy
, F or Handling ... v]
Writable Smart Insert 97:1: 3573 : L]

NOTE: When attaching the device tothe USB port, a virtual serial interface is automatically created for the UART interface.
You can start a terminal emulation on the machine (with the connection parameters set previously) to see the
device measurement results.

Broadcom AFBR-S50-PG100
65

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 37: Porting Guide Serial Port Settings

Serial port settings

Port configuration

Baud rate 115200~

Data bits 3 ~
Stop bits 1 -
Parity none e
Flow control |none ~

Forward none w

User interface language

Transmitted text
(O Append nothing
() Append CR

(® Append LF
(O Append CRAF

Local echo
Received text
Polling 100
Max. lines

Font | default
[word wrap

ms

| English (en)

> |

Options

|:| Stay on top

Quit on Escape
Autocomplete edit line
Keep history

[Close port when inactive

Plug-ins

cance

Figure 38: Porting Guide Terminal Stream

@ Termite 3.4 (by CompuPhase)

COM12 115200 bps, 8M1, no handshake

Settings

Clear

About

*

Close

Fange: 28 mm
Fange: 29 mm
Fange: 32 mm
Fange: 35 mm
Fange: 28 mm
Fange: 44 mm
Fange: 31 mm
Fange: B6 mm
Fange: 98 mm
Fange: 130 mm
Fange: 130 mm
Fange: 130 mm
Fange: 1887 mm
Fange: 1883 mm
Fange: 1881 mm
Fange: 1880 mm

Ll

[«]

To understandably display the streamed range values from the serial port in the terminal, the sensor's frame rate was set to
10 Hz. Appendix A, Modifying the Example Application, describes how to set a target frame rate with the API.

Broadcom

AFBR-S50-PG100
66

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Appendix A: Modifying the Example Application

Now you are ready to create a full application in the App folder according to your needs.

A starting point can be to increase the SPI speed to the capability of the board.

Increasing the SPI speed (line #)

| * #define SPI_BAUD RATE 6000000 */
#defi ne SPI _BAUD_RATE 21000000

You can also increase the frame rate by setting a smaller frame time.

Adapting the frame time (line #)

/* AFBR- S50_Set Confi gurati onFranmeTi ne(hnd, 100000); // 0.1 second = 10 Hz */
AFBR- S50_Set Conf i gur ati onFraneTi ne(hnd, 1000); // 0.001 second = 1000 Hz

If you use the terminal emulation, you may need to increase the UART baud rate as well, to deliver all measurement results
in time.

A.l Setting Up Floating-Point ABI for Soft Floating Point Usage

Currently, the current API version comes without floating-point support. To be able to link successfully, the same floating point
implementation style should be set, so that the floating-point ABI has to be set to -mfloat-abi=softfp in the project settings.

Broadcom AFBR-S50-PG100
67

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 39: Setting Floating-Point ABI

m Properties for Argus_ExampleApp_STM32F401RE

Environment

O
Resource
Builders

w C/C++ Build Configuration:§ [All configurations] ~ | | Manage Configurations...
Build Variables

@ Include paths
@ Miscellaneous
~ B MCU GCC Compiler
(2 General
(22 Debugging
(2 Preprocessor
@ Include paths
@ Optimization
@ Warnings
(# Miscellaneous
w B MCU GCC Linker
(22 General
@ Libraries
@ Miscellaneous

Legging * Toolchawq i Tool Settings & Build Steps Build Artifact Binary Parsers @@ Error Parsers
t: Settings
C/C++ General (22 MCU Settings hcu STM3ZFA0TRET:
e}

CMSIS-5VD Settings (2 MCU Post build outputs Eoard T

Project References ~ B3 MCU GCC Assembler

Refactoring History (2 General Floating-poeint unit | FPv4-5P-D16 ~
% Debuggi

Run/Debug Settings % eougging Floating-point ABl | Hardware implementation (-mfloat-abi=hard) ~
(22 Preprocessor

Instruction set

Runtime library

[Use flcat with printf frem newlib-nano (-u _printf_float)

[Use float with scanf from newlib-nano (-u_scanf float)

Restore Defaults Apply

Apply and Close Cancel

Broadcom

AFBR-S50-PG100
68

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Revision History

Version 1.0, June 22, 2020

= |nitial document release.

Broadcom AFBR-S50-PG100
69

©® BROADCOM'

	Porting Guide to a Cortex-M4
	Table of Contents
	Chapter 1: Introduction
	1.1 AFBR-S50MV85G-EK Evaluation Kit Software

	Chapter 2: Phase 1: Installing and Preparing the IDE
	Step 1. Downloading and Installing the IDE
	Step 2. Defining the Workspace
	Step 3. Creating a Native Project
	2.1 File Structure
	Step 4. Creating the File Structure

	Chapter 3: Phase 2: Addition of the MCU Devices with the IDE
	Step 5. Opening the Device Configuration Tool in the IDE
	3.1 Clock Configuration
	3.2 S2PI (= SPI + GPIO) Layer
	Step 6. SPI Basic Setup
	Step 7. SPI DMA Setup
	Step 8. NSS/IRQ GPIO Setup

	3.3 Timer Layer
	3.3.1 Lifetime Counter (LTC)
	Step 9. Setting Up the First LTC Timer
	Step 10. Setting Up the Second LTC Timer

	3.3.2 Periodic Interrupt Timer (PIT)

	3.4 Optional: UART
	3.5 Interrupt Configuration
	Step 11. Configuring the Interrupts in the IDE

	3.6 Code Generation
	Step 12. Setting the Code Generation Options
	Step 13. Performing the Code Generation

	Chapter 4: Adapting the Generated Data to the Argus API
	Step 14. Adding the Required Include Paths
	Step 15. Adding the AFBR-S50 Library
	4.1 IRQ API
	Step 16. Creation of the IRQ File
	Step 17. Implementing the IRQ Locking

	4.2 S2PI API
	Step 18. Creation of the S2PI File
	Step 19. Adding the S2PI Includes
	Step 20. Implementing the S2PI Data Structures
	Step 21. Implementing the S2PI Initialization
	Step 22. Implementing the SPI Get Status Function
	Step 23. Implementing the Helper Functions for the SPI Baud Rate
	Step 24. Implementing the SPI/GPIO Switch
	Step 25. Implementing the GPIO Access
	Step 26. Implementing the CS Cycling
	Step 27. Implementing the SPI Transfer Start
	Step 28. Implementing the SPI Transfer Completion
	Step 29. Implementing the SPI Transfer Abort
	Step 30. Implementing the SPI Transfer Error Handling
	Step 31. Implementing the External Interrupt Handling

	4.3 Timer API
	Step 32. Creation of the Timer File
	Step 33. Adding the Timer Includes
	Step 34. Implementing the Timer Initialization
	Step 35. Implementing the LTC Readout
	Step 36. Implementing the PIT Start/Stop
	Step 37. Implementing the PIT Interrupt Handling

	4.4 Optional: UART API
	Step 38. Creation of the UART File
	Step 39. Adding the UART Includes
	Step 40. Defining the UART Variables
	Step 41. Implementing the UART Initialization
	Step 42. Implementing the UART Send Operation
	Step 43. Implementing the UART Send Completion
	Step 44. Implementing the Formatted Output Using print()

	4.5 Board API
	Step 45. Creation of the Board File
	Step 46. Implementing the Board File

	Chapter 5: Running the Example Application
	5.1 Creating the Example Application
	Step 47. Copying the Example Application
	Step 48. Compiling and Running the Example Application

	Appendix A: Modifying the Example Application
	A.1 Setting Up Floating-Point ABI for Soft Floating Point Usage

	Revision History
	Version 1.0, June 22, 2020

