

Ceramic Capacitor Technology

CeraLink™ Opens New Dimensions in Power Electronics

EPCOS AG

A TDK Group Company PPD Business Group Germany September 2018

Ceramic Capacitor Technology

PLZT – a highly flexible ceramic material class

Piezo actuators

Capacitors

CeraLink™ at a first glance

PPD • 08/18 • 4

CeraLink™ at a first glance

New demands for DC link capacitors

Improvements in power density and efficiency were mainly driven by semiconductor technology in the last decade.

Example: principle block picture and size comparison of a motor inverter

"Today the package of a motor inverter is mainly driven by the size of the capacitor, the bus bars, the terminal box and the filter components."

Source: Plikat, Mertens, Koch, Volkswagen AG, Corporate Research, 2013

Requirements for a DC link capacitor

- High capacitance density
- High current density
- Low parasitic values (ESR/ESL) for fast switching
- Low losses in operation
- High operating and peak temperatures
- High cooling efficiency due to high thermal conductivity
- Support of distributed DC link capacitor topologies with low inductance components (modular design)

Technology guideline

How does CeraLink™ meet these requirements?

PLZT – an antiferroelectric material

- P Dielectric polarization
- E Electrical field strength
- ε Permittivity

High capacitance density at operating condition

- Due to antiferroelectic behavior, the characteristics of CeraLink[™] are strongly non-linear and optimized for conditions under operation in power electronics
- Film capacitors and class 1 ceramics have a dielectric constant (nearly) independent on the electrical field. (ε < 100)
- The permittivity of ferroelectric (e.g. X7R)
 MLCC capacitors is decreasing with electrical field
- CeraLink™ features an increasing dielectric constant up to the operating voltage
- At higher AC voltage (peaks), the material is able to provide even higher permittivies

DC bias characteristics at room temperature

	Film capacitor	Class 2 MLCC	CeraLink™
Nominal / rated capacitance	100 %	100 %	100 %
No bias voltage $0.5\mathrm{V_{RMS}}$	100%	100 %	35 %
DC link voltage 0.5 V _{RMS}	100 %	35 %	60 %
DC link voltage 20 V _{RMS}	100 %	35 %	100 %

DC link (energy)
Snubber

CeraLink™ is ideal for fast switching

Device characteristics lead to a low inductive commutation loop

- High capacitance density of 2 to 5 μF/cm³
- Low self-inductance (ESL) of 2.5 to 4 nH
- High thermal robustness allows CeraLink[™] to be placed very close to the semi-conductor with operation up to 150 °C permissible
- No limitation of dV/dt

Semiconductor overshoot principle

Ceramic Chip Features Design for robustness against ceramic cracks

MLSC design

- Series connection of two MLCC geometries in one component.
- MLSC design prevents short circuits caused by cracks from mechanical overstress

MFD design

 Chip is segmented in height to reduce piezoelectric stress between active and inactive area

Ceramic chip design for high current capability and high thermal conductivity

Copper inner electrodes

- Co-firing of PLZT ceramic material together with Cu is difficult, but possible
- Cu process is one core competence of the piezo mother factory in Deutschlandsberg, Austria

Cross section of the CeraLink™ multilayer chip consisting of appr. 80 dielectric ceramic layers

Packaging Behust inte

Robust interconnection of metallic contacts

10,000 cycles thermal shock test (-55 °C to +150 °C)

- Silver sinter connection between ceramic body and lead frame
- Outer contacts made of CIC (copper invar* copper), to combine high electrical and thermal conductivity with low coefficient of thermal expansion
- All materials are excellent thermal and electrical conductors (lowest thermal and electrical resistance)
- Silver layer prevents cracking of the ceramic in case of mechanical overstress or solder shock -> open mode!

*Invar: 36Ni-Fe

Low losses at high temperatures and frequencies

Comparison @ 1 V_{AC}, 1 kHz, 400 V_{DC}, 25 °C

Low dielectric loss at high temperatures

Comparison @ 0.1 V_{AC}, 0 V_{DC}, 25 °C

Minimal ESR due to low-loss copper electrodes and HF-suited backend

BTO = barium titanate oxide = standard MLCC material

Low self-heating and high current capability

Due to low losses at high temperaure and high frequency, CeraLink™ can carry more current under these conditions

Measurement condition	MKP film capacitor	BTO Class 2 MLCC	CeraLink™
Typical capacitance density @ DC link voltage, 20 V _{RMS} , 25°C	0.7 μF/cm ³	2.5 μF/cm ³	4.9 µF/cm³
Typical current rating per capacitance @ 100 kHz, 105°C	< 1 Α/μF	< 4.5 A/µF	12 A/µF

Comparison @ 400 V_{DC}, 105 °C, 200 kHz

Comparison @ 400 V_{DC}, 85 °C, 5 A_{rms}

Measurements were carried out without active cooling (no forced air flow, no heat sink)

Exceptional lifetime at high temperatures

Lifetime @ 200 °C three orders of magnitude higher than that of conventional ceramic capacitors

Lifetime at high temperatures – comparison of ceramic capacitors

CeraLink™ offers highest lifetime and capacitance density compared to conventional ceramic capacitors

Low leakage current at high temperatures

CeraLink[™] shows stable and outstanding high isolation properties compared to all existing capacitor technologies

- low leakage current at elevated temperatures even above 150°C
- No thermal runaway observed for CeraLink™ ceramic material

Comparison @ 400 V_{DC}

Parallel capacitors No thermal runaway

The capacitance characteristic and low ESR of CeraLink™ avoid a thermal runaway:

Green: CeraLink™ small signal capacitance measurement (0.1 V_{rms}, 1 kHz)

Black: TDK Megacap $1\mu F 630V \rightarrow measurement (0.1 V_{rms}, 1 kHz)$

Higher temperature leads to:

- Lower capacitance
- Higher impedance
- Lowest current through the <u>hottest</u> capacitor

CeraLink™ Product portfolio – modular design

CeraLink™ product range

Series		Nominal capacitance / rated voltage			
Designed for		650 V semiconductors	900 V semiconductors	1300 V semiconductors	
Low Profile LP (L leads)		1 μF / 500 V	0.5 μF / 700 V	0.25 μF / 900 V	
Low Profile LP (J leads)	The state of the s	1 μF / 500 V	0.5 μF / 700 V	0.25 μF / 900 V	
Flex Assembly FA10	i i i i i i i i i i i i i i i i i i i	10 μF / 500 V	5 μF / 700 V	2.5 μF / 900 V	
Flex Assembly FA2 / FA3		2/3 μF / 500 V Release 09/18	1/1.5 µF / 700 V Release 09/18	0.5/0.75 μF / 900 V Release 09/18	
Solder Pin SP	8. COX - D'ON AND AND AND AND AND AND AND AND AND AN	20 μF / 500 V	10 μF / 700 V	5 μF / 900 V	

	Solder Pin (SP)	Flex Assembly (FA10)	
Ceramic chip	PLZT ceramic, MLSC design, copper inner electrodes, sputter layer	PLZT ceramic, MLSC design, copper inner electrodes, sputter layer	~
Number of ceramic chips	20	10	
Lead frame	Cu meander structure / solder pin	CIC (copper-invar-copper) multilayer material, J-shaped connectors for each chip; SMD mounting technology	+
Voltage rating	500 / 700 / 900 V	500 / 700 / 900 V	~
Nominal capacitance	5 μF (900 V) – 20 μF (500 V)	2.5 μF (900 V) - 10 μF (500 V)	~
Current rating (f = 100 kHz; VDC = U _{op} ; T _{ambient} = 85°C)	24 A _{rms} (1.2 A _{rms} per chip; 900 V type)	32 A _{rms} (3.2 A _{rms} per chip; 900 V type)	+
Mounting area	726 mm² (square area; 36 mm² per chip)	213 mm² (21.3 mm² per chip)	+
Zhermomechanical stability	-50 / 150°C / 1000 cycles no damage, no degradation	-55 / 150 °C / 1.000 cycles no damage, no degradation -55 / 150 °C / 10.000 cycles tested on the package system w.o. damage	+
Weight per chip	1.55 g	1.15 g	+

SiC market

Availability of various voltage classes

Source: Littlefuse white paper

1200 V SiC power modules → Ideal for our 900 V series

Traditional design

Integrated servo drive

... electronics is integrated into the motor housing

... SiC for new designs

Application example - Automotive Onboard chargers

Recommended products (selection)

- 1. Chip NTCs (thermal sensing against overheating)
 - B57232V5103+360
 - B57332V5103+360
 - NTCG164LH104H
- 2. Chip varistors (ESD protection for data lines)
 - CT0402S17AG
 - CT0603L25HSG
 - AVRM1608C270MT*
- 3. Chip varistors (low voltage surge protection)
 - CT0805S14BAUTOG
 - CT1206S14BAUTOG
 - CT2220K30G
 - AVRM2012C390KT6AB
- 4. Leaded varistors (high voltage surge protection)
 - SNF14K***E2K1
 - SNF20K***E2K1
- 5. Surge arresters (high voltage protection)
 - EHV6*-H...B1-B7
 - EHV60-H...SMD
- 6. PTC ICLs (inrush current protection)
 - J21x series
- 7. CeraLink™ (DC link capacitor or output filtering)
 - B58031*
 - Flex Assembly FA2 or FA3

Application examples Ideal for demanding applications

Motor sports

Power supplies for medical equipment

Test & measurement

Electric aircraft

Down-hole power supplies (gas & oil)

Traction (SiC)

Attracting Tomorrow

Chip CeraLink™ 2220 in development

	TDK MLCC Height: 2.5 mm	CeraLink™ 2220 Height: 1.4 mm	
Capacitance @ 0 V DC, 25 °C	470 nF	60 nF	×
Capacitance @ 400 V DC, 25 °C	183 nF	110 nF	×
Capacitance @ 400 V DC, large signal, 25 °C	183 nF	220 nF	✓
Size [l x w x h]	5.7 x 5 x 2.5 mm	5.6 x 4.7 x 1.4 mm	✓
Capacitance density @ 400 V DC (400 V DC large signal)	2.57 μF/cm³	3.4 (6.6) µF/cm³	✓
T _{max}	125 °C	150 °C	✓
I _{rms} @ 100 kHz*	2.1 A _{RMS}	4.0 A _{RMS}	✓

Benchmark MLCC: C5750X7T2J474K250KC 2220 470 nF 630 V Standard termination

- Optimized for capacitance density (MLCC design)
- No stress-relief layer necessary for 1 mm active packet (1.4 mm chip height)
- Termination: Cu cap with Ni/Sn galvanics

Target:
CeraLink™ 2220
2220 200 nF 500 V
Standard termination

^{*} T_{amb} = 85°C / f = 100 kHz / VDC = 400V / calculated from I_{rms} = 3 A and device temperature after 15 min

Summary

Key benefits of CeraLink™

- Effective capacitance increases with rising voltage and leads to high capacitance density
- Low ESL and low inductive connection
- Low ESR especially at high frequencies and high temperatures
- High current density
- High operating and peak temperatures with temperature excursions up to 150°C
- High robustness against high temperatures
- Supports fast-switching semiconductors and high switching frequencies
- Supports further miniaturization of power electronics at the system level

