infineon
ModusToolbox™ tools package user guide

ModusToolbox™ tools package version 3.0.0

About this document

Scope and purpose

This guide provides information and instructions for using the ModusToolbox™ tools provided by the version
3.0 installer and the make build system. This document contains the following chapters:

e Chapter 1 describes ModusToolbox™ software.

e Chapter2 provides instructions for getting started using the ModusToolbox™ tools.

e Chapter 3 describes the ModusToolbox™ build system.

e Chapter4 covers different aspects of the ModusToolbox™ board support packages (BSPs).

e Chapter 5 explains the ModusToolbox™ manifest files and how to use them with BSPs, libraries, and code
examples.

e Chapter 6 provides instructions for using a ModusToolbox™ application with various third-party tools and
integrated development environments (IDEs).

Intended audience

This document helps application developers understand how to use all the tools included with ModusToolbox™
software.

Document conventions

Convention Explanation

Bold Emphasizes heading levels, column headings, menus and sub-menus

Italics Denotes file names and paths.

Courier New Denotes APIs, functions, interrupt handlers, events, data types, error handlers, file/folder names,
directories, command line inputs, code snippets

File > New Indicates that a cascading sub-menu opens when you select a menu item

Abbreviations and definitions
The following define the abbreviations and terms used in this document that you may not be familiar with:

e BSP-board support package

e PDL - peripheral driver library

e HAL - hardware abstraction layer
e WHD - Wi-Fi host driver

e WCM - Wi-Fi connection manager

User Guide Please read the Important Notice and Warnings at the end of this document 002-29893 Rev. *R
www.infineon.com page 1 of 107 2023-01-23

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Table of contents

Table of contents

1 INErOAUCHION c.uivuiieiiiiiniiniineiiesieiineinesiaciaesrestsessestascsesressasssestascassssssassssssascassrsssssssssssssassssssassnes 4
1.1 What is MOAUSTOOIDOX™ SOFLWAIEToeveeeeiieeeeeeet ettt ettt e e s e s e s e seeneas 4
1.2 RUN-EIME SOTEWATIE. ...ttt te e e e st e e et e e e e te s beenaesbeeseesseessestesbeestesessaansesseansenes 4
1.3 D1V (oY 0T 0 41T) ol oo] E=3 PSP 7
1.4 PrOAUCE VEISIONINEG c.eeueiiieeieeieeieeteieet et tes e st e steste st e aeese et e saeeseessesseessesseessessesnsansesssessensesssensesssenses 14
15 P artNEr ECOSYSTEIMS .ceeitieieeteeeeetee ettt ettt e ettt e se bt e e e s abeeessssteessssaeesssssaaesssssesesssnsssesssssenesssssnenes 18
2 Getting Started ...ccvciiiiiiiieiiiiiiiiiiiiieiiiiniieeiiiieeisesiaicsestsitsecaestsstsesssstssssessrssssanssrsssessnssassanss 19
2.1 Install and CONfIGUIE SOFEWAIE c....ceuieiiiieieereeee ettt sttt n e se b 19
2.2 Open help dOCUMENTALION......ic ittt e e e e s e e s e e e e s e s se e e essessnensessesnsenes 20
2.3 Create application from tEMPIAte.....cccciciecececeeeeee ettt ettt 21
2.4 Understand appliCation SEIUCLUIESccvivuieiececeeeeeeteree et e e sre e e se s e e saeesnenes 22
2.5 BUILA @NA PIrOZIam c..cueiieiiieieieieteeete ettt ettt sttt et sttt s e b e s s e besbe st enaensenteneenesaens 26
3 Updating the example applicationccccciieiiiiiniinciininiineiininiiniieiiseinsiascaesressscsessescasssesssesses 28
3.1 U oY o1 (N 1] o =Y =PRSS 28
3.2 UPAALE BSPS ..ottt et ste e te s te e te e te e st este s te s beesbaesseesatesata s saebeesseeansesnseesseenseesaesreesntentaans 29
3.3 Configure settings for devices, peripherals, and libraries..........cocoevevereveininenenenereeeeeesene 29
34 LR o] o] LT of=Y o] o I oo o [OSSR 31
3.5 DebUE the @PPlICATION....ccuiriiieteteeee ettt ettt st sb bbb sa e sesaees 32
4 ModusToOlbOX™ BUIld SYStEM ...cuieiiiiuiiiieieiianiniecestastossececassssssssecsssssssssscsssassssssssscssssssssssssssas 34
4.1 OVEIVIEW c.tiirerierieesitesiteseestessteesteeseeesreesasesssessse s bassssesssesssessseesseaseesseesseesssesssesssessseenseesssessseesseessaensees 34
4.2 0 aF 1Sl 411 o T USSP 34
4.3 MAKE ZELLDS ..ttt ettt st ettt st st et e st et e s be e e e aeenaeneas 35
4.4 B O P S ettt et s et e e e e s e s a e e e e e e ee s aataeeeeee e e bttt aeeeeee s e ettt aeeeeeesesrraaaaaeeesessare 36
4.5 ENVIrONMENT VAriablESui ettt ettt e rte e e be e s e e st e e abe e be e baesraesreesntannsanas 36
4.6 AING SOUICE FIlES ettt ettt sttt ettt st b s b b e st e e e e e e eneeneee 36
4.7 Pre-builds and pOSt-DUILAS......c.ccviiieeeeeee ettt e e aeesneneas 38
4.8 AVAI[aD1E MAKE LArZETS...cciiiieieiiteeee ettt ettt et s be st et e st e besaeentenbesanensens 39
4.9 AVailable MaKe Variablescvivieieieeccecee ettt sttt e et e s e e e se e e et e sseesaessessnensans 41
5 Board SUPPOrt PACKAZES . ccucteireireircirsresrecsecasressessecascsssessessscsssessessscsssesssssssasssssssssssscsssrssesassnsses 47
5.1 OVEIVIEW ...veieiiteeireeeiteesteesieeesteeseteeessseesseessaeesssaesssaesssseesssaeesssesssseesnssesssseessssesssseesssseessseesssessseessseees 47
5.2 L T T g 1 2 TR 47
5.3 Creating YOUN OWN BSP ...ttt ettt et et see st st s b bt e s e e st e e eeesmeesmees 49
6 Manifest fileS .oiuiiriiniiieiiiiniiniiniineiiiineieeiieiiaecneiiaecsesisicsessestascaessssssessssssssassssssssssssssssasssnssasses 50
6.1 OVEBIVIEW ...veieiiteeireeeiteesteesreeesteessteeessseesseessaeessbaesssaasssseessseeesssesssseesnsseessseessssesssseesssseessseessssesssseesssaes 50
6.2 Create YOUr OWN MANIfESt....cciiiiririeiererteiere ettt et e st st e te st et et e st e s e sse et e saesnsensesanensessesnsenes 51
6.3 USING OFfliN@ CONTENT ...ttt sb st ettt bbb 53
6.4 ACCESS PrIVALE FEPOSITONIES ...viiiiiiiiiiieieeerteeriee et eestteesteessteesssteesseesssseessseessseesssseesssaesssseessseessseessres 54
7 Using applications with third-party toolS......cccciiiiuiiiiniinciiiiniineniiiieiiiiieiiseiisensessssscsecses 56
7.1 Version Control and sharing appliCationScueceeeeriinirrererteestetese ettt sre e e sae e e 56
7.2 IMPOIE L0 ECLIPSE cutentieieieeieeteeeteteet ettt ettt e et e e sae et e st e st e s e s seessesseestassesnnensassesnsansesssenses 57
User Guide 2 of 107 002-29893 Rev. *R

2023-01-23

o~ _.
ModusToolbox™ tools package user guide ‘ In fl neon

Table of contents

7.3 EXPOIrting t0 SUPPOIEA IDES.....ccuviiieeieierieeieieeeeteeeeee et e e seeetesae st e s e s e eseessesssessesseessassesssensesssenses 58
7.4 MULEI-COME AEDUGZINE ..cuveeiteieeteteet ettt ettt s ettt st et s bt et e s bt et e sbesaeesbe s bt et esseensenses 85
7.5 Patched flashloaders for AIROC™ CYW208XX EVICESuvevvereeevenrerrerienesrenseetessesseessessesssessessessenns 105
7.6 Generating files for XMC™ Simulator t0O0L.....cueiiieeieriereeieeseeesesree ettt 105
User Guide 3of 107 002-29893 Rev. *R

2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Introduction

1 Introduction

This chapter provides an overview of the ModusToolbox™ software environment, which provides support for
many types of devices and ecosystems.

1.1 What is ModusToolbox™ software?

ModusToolbox™ software is a modern, extensible development environment supporting a wide range of
Infineon microcontroller devices. It provides a flexible set of tools and a diverse, high-quality collection of
application-focused software. These include configuration tools, low-level drivers, libraries, and operating
system support, most of which are compatible with Linux-, macOS-, and Windows-hosted environments.

The following diagram shows a very high-level view of what is available as part of ModusToolbox™ software.
This is not a comprehensive list. It merely conveys the idea that there are multiple resources available to you.

Applications Tools

Project

Code Examples Reference Designs Fiee el

Middleware Library

Human-Machine Manager

(T o Graphics Connectivity Security

Eclipse and
Voice / Audio Machine Learning Wi-Fi Bluetooth® partner IDEs

Configurators
BSPs and Tuners

™
PSoC™ XMC™ USB AIROC AIROC™

MCU MCU Controllers ~ COMNEtMIty 5 etoothe Gitand Make
Processor build system

ModusToolbox™ software does not include proprietary tools or custom build environments. This means you
choose your compiler, your IDE, your RTOS, and your ecosystem without compromising usability or access to
our industry-leading CAPSENSE™, AIROC™ Wi-Fi and Bluetooth®, security, and various other features.

Another important aspect of the ModusToolbox™ software is that each product is versioned. This ensures that
each product can be updated on an ongoing basis, but it also allows you to lock down specific versions of the
tools for your specific environment. See Product versioning for more details.

1.2 Run-time software

ModusToolbox™ tools also include an extensive collection of GitHub-hosted repos comprising Code Examples,
BSPs, plus middleware and applications support. We release run-time software on a quarterly "train model"
schedule, and access to new or updated libraries typically does not require you to update your ModusToolbox™
installation.

New projects start with one of our many Code example templates that showcase everything from simple
peripheral demonstrations to complete application solutions. Every Infineon kit is backed by a comprehensive
BSP implementation that simplifies the software interface to the board, enables applications to be re-targeted
to new hardware in no time, and can be easily extended to support your custom hardware without the usual
porting and integration hassle.

User Guide 4 0f 107 002-29893 Rev. *R
2023-01-23

https://github.com/Infineon
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Introduction

The extensive middleware collection includes an ever-growing set of sensor interfaces, display support, and
connectivity-focused libraries. The ModusToolbox™ installer also conveniently bundles packages of all the
necessary run-time components you need to leverage the following key Infineon technology focus areas:

e CAPSENSE™ technology

e AnyCloud (AIROC™ Wi-Fi and Bluetooth® applications)

e Machine Learning

e Device Security (PSoC™ 64 "Secure Boot" MCU)

1.2.1 Code examples

All current ModusToolbox™ examples can be found through the GitHub code example page. There you will find
links to examples for the Bluetooth® SDK, PSoC™ 6 MCU, PSoC™ 4 device, among others. For most code
examples, you can use the Project Creator tool to create an application and use it directly with ModusToolbox™
tools. For some examples, you will need to follow the directions in the code example repository to instantiate
the example. Instructions vary based on the nature of the application and the targeted ecosystem.

In the ModusToolbox™ build infrastructure, any example application that requires a library downloads that
library automatically.

You can control the versions of the libraries being downloaded and also their location on disk, and whether
they are shared or local to the application. Refer to the Library Manager user guide for more details.

1.2.2 Libraries (middleware)

In addition to the code examples, there are many other parts of ModusToolbox™ that are provided as libraries.
These libraries are essential for taking full advantage of the various features of the various devices. When you
create a ModusToolbox™ application, the system downloads all the libraries your application needs. See
ModusToolbox™ build system chapter to understand how all this works.

All current ModusToolbox™ libraries can be found through the GitHub ModusToolbox™ software page. A
ModusToolbox™ application can use different libraries based on the Active BSP. In general, there are several
categories of libraries. Each library is delivered in its own repository, complete with documentation.

1.2.2.1 Common library types:
Most BSPs have some form of the following types of libraries:

e Abstraction Layers - This is usually the RTOS Abstraction Layer.
e Base Libraries - These are core libraries, such as core-lib and core-make.
e Board Utilities - These are board-specific utilities, such as display support or BTSpy.

e MCU Middleware - These include MCU-specific libraries such as freeRTOS or Clib support.

1.2.2.2 AIROC™ Bluetooth® Libraries:
For the AIROC™ Bluetooth® BSPs, there specific libraries that do not apply to any other BSPs, including:

e BTSDK Chip Libraries

e BTSDK Core Support

e BTSDK Shared Source Libraries

e BTSDK Utilities and Host/Peer Apps

User Guide 50f 107 002-29893 Rev. *R
2023-01-23

https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://www.infineon.com/ModusToolboxLibraryManager
https://github.com/Infineon/modustoolbox-software#libraries

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Introduction

1.2.2.3 BSP-specific base libraries:

BSP-specific libraries include mtb-hal, mtb-pdl, and recipe-make. Some of these are identified as device-
specific using the following categories:

e catl/catla=PSoC™ 6 MCUs (mtb-hal-catl, recipe-make-catla, etc.)

e cat2=PSoC™4 devices and XMC ™ Industrial MCUs (mtb-hal-cat2, mtb-pdl-cat2)

e cat3=XMC™Industrial MCUs (recipe-make-cat3)

1.2.2.4 PSoC™ 6 additional libraries:

Due to the nature of the PSoC™ 6 MCU, plus the combo devices, certain PSoC™ 6 BSPs have additional libraries,
including:

e Bluetooth® Middleware Libraries - These are for the BTStack and Bluetooth® FreeRTOS.

e PSoC™6 Middleware - These are libraries specific to the PSoC™ 6 MCU, such as EMEEPROM and DFU.

o Wi-Fi Middleware Libraries - These are libraries for AnyCloud applications on a PSoC™ 6 MCU with AIROC™
CYW43xxx Wi-Fi & Bluetooth® combo chip.

1.2.3 BSPs

The BSP is a central feature of ModusToolbox™ software. The BSP specifies several critical items for the
application, including:

e hardware configuration files for the device (for example, design.modus)

o startup code and linker files for the device

e other libraries that are required to support a kit

BSPs are aligned with our development/evaluation kits; they provide files for basic device functionality. A BSP
typically has a design.modus file that configures clocks and other board-specific capabilities. That file is used by

the ModusToolbox™ configurators. A BSP also includes the required device support code for the device on the
board. You can modify the configuration to suit your application.

1.2.3.1 Supported devices
ModusToolbox™ software supports development on the following Arm Cortex-M devices.

e AIROC™ Wi-Fi and Bluetooth® chips
e PMG1 USB-C Power Delivery Microcontroller

e PSoC™4 Configurable Microcontroller (See AN79953: Getting Started with PSoC™ 4 for the supported
PSoC™ 4 devices.)

e PSoC™6MCU
e PSoC™64 "Secure Boot" MCU

e XMC™Industrial Microcontroller

User Guide 6 of 107 002-29893 Rev. *R
2023-01-23

https://www.infineon.com/dgdl/Infineon-AN79953_Getting_Started_with_PSoC_4-ApplicationNotes-v21_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07271fd64bc1&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-files

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Introduction

1.2.3.2 BSP releases

We release BSPs independently of ModusToolbox™ software as a whole. This search link finds all currently
available BSPs on our GitHub site.

The search results include links to each repository, named TARGET_kitnumber. For example, you will find links
to repositories like TARGET CY8CPROTO-062-4343W. Each repository provides links to relevant
documentation. The following links use this BSP as an example. Each BSP has its own documentation.

The information provided varies, but typically includes one or more of:

e an APl reference for the BSP

e the BSP overview

e alink to the associated kit page with kit-specific documentation

A BSP is specific to a board and the device on that board. For custom development, you can create or modify a
BSP for your device.

1.3 Development tools

The ModusToolbox™ tools package provides you with all the desktop products needed to build sophisticated,
low-power embedded, connected and loT applications. The tools enable you to create new applications
(Project Creator), add or update software components (Library Manager), set up peripherals and middleware
(Configurators), program and debug (OpenOCD and Device Firmware Updater), and compile (GNU C compiler).

Infineon Technologies understands that you want to pick and choose the tools and products to use, merge
them into your own flows, and develop applications in ways we cannot predict. That’s why ModusToolbox™
software is not a monolithic, proprietary software tool that dictates the use of any particular IDE.

For convenience, the tools package installation includes the Eclipse IDE for ModusToolbox™. However, we fully
support the following IDEs and their corresponding compiler technology, so you are free to develop the way
you wish:

e Microsoft Visual Studio Code (VS Code)

e |AREmbedded Workbench (EW-ARM)

e Arm Microcontroller Developers Kit (uVision 5)

For detailed instructions developing ModusToolbox™ applications with third-party IDEs, see the Exporting to
supported IDEs chapter in this guide.

The ModusToolbox™ tools package installer provides required and optional core resources for any application.
This section provides an overview of the available resources:

e Directory structure

e Documentation

e |DE support
e Tools

The installer does not include code examples or libraries, but it does provide the tools to access them.

User Guide 7 of 107 002-29893 Rev. *R
2023-01-23

https://github.com/Infineon?q=TARGET_
https://github.com/Infineon/TARGET_CY8CPROTO-062-4343W
https://infineon.github.io/TARGET_CY8CPROTO-062-4343W/html/modules.html
https://github.com/Infineon/TARGET_CY8CPROTO-062-4343W
https://www.infineon.com/documentation/development-kitsboards/psoc-6-wi-fi-bt-prototyping-kit-cy8cproto-062-4343w
https://www.infineon.com/modustoolbox

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Introduction

1.3.1 Directory structure

Refer to the ModusToolbox™ tools package installation guide for information about installing ModusToolbox™
software. Once it is installed, the various ModusToolbox™ top-level directories are organized as follows:

v ModusToolbox
docs 3.0
ide_3.0
tools_3.0
Packs
Note: This image shows ModusToolbox™ version 3.0 installed. Your installation may include more than

one ModusToolbox™ version. Refer to the Product versioning section for more details.

The ModusToolbox directory contains the following subdirectories for version 3.0:

o docs_3.0 - Thisis the top-level documentation directory. It contains various top-level documents and an
html file with links to documents provided as part of ModusToolbox™ software. See Documentation for
more information.

e jide_3.0:

e eclipse - This contains the Eclipse IDE for ModusToolbox™ executable, which is an optional
implementation for your convenience. The IDE includes the ModusToolbox™ perspective, application
management, code authoring and editing, build tools, and debug capabilities. It supports the C and C++
programming languages, includes the GCC Arm build tools, and supports debugging via OpenOCD or J-
Link. For more details, refer to the Eclipse IDE for ModusToolbox™ user guide.

e tools_3.0: This contains all the various tools and scripts installed as part of ModusToolbox™. See Tools for
more information.

e Packs: Packs can be installed separately from a tools package release. These packs include additional
software and tools for specific features, such as machine learning. If you install a pack, it will create a
“packs” subdirectory in the root “ModusToolbox” installation directory. Refer to the pack documentation
for specific details about a pack.

To install a pack, go to <URL to IDC>. There will be links to either install the pack directly or download it to
install manually. The pack documentation will provide additional instructions and requirements, as
needed.

1.3.2 Documentation

The docs_<version> directory contains top-level documents and an HTML document with links to all the
documents included in the installation and on the web.

1.3.2.1 Release notes

For the 3.0 release, the release notes document is for all of the ModusToolbox™ software included in the
installation.

1.3.2.2 Top-level documents

This folder contains the Eclipse IDE documentation, the ModusToolbox™ software installation guide, and this
user guide. These guides cover different aspects of using the IDE and various ModusToolbox™ tools.

User Guide 8 of 107 002-29893 Rev. *R
2023-01-23

http://www.infineon.com/ModusToolboxInstallGuide
https://www.infineon.com/MTBEclipseIDEUserGuide

o _.
ModusToolbox™ tools package user guide In fl neon

Introduction

1.3.2.3 Document index page

The doc_landing.html file provides links to all the documents included in the installation and on the web. This
file is also available from the IDE Help menu.

ModusToolbox™ 3.0 documentation

This page provides brief descriptions and links to various types of documentation included as part the ModusToolbox™ software.

Note: Many of these documents are provided online at the ModusToolbox™ website. Also, some of the documents online might be more current than versions installed on disk.

Getting started documents

This section contains general documents to install and use ModusToolbox™ software, as well as use the provided Eclipse IDE.

ModusToolbox™ installation

guide This document describes how to install the ModusToolbox™ software on Windows, Linux, and macOS.

ModusToolbox™ tools package This document lists and describes features for this release of ModusToolbox™. It also includes known issues and workarounds and
release notes important design impacts you should know.

This document provides an overall user guide for ModusToolbox™ GUI and CLI tools, including getting started and exporting to various |DEs,

IV & i - . - . . .
ModusToolbox™ user guide including Visual Studio Code, IAR Embedded Workbench, and Keil pVision.

This is a comprehensive collection of information and exercises to help you learn how to use ModusToolbox™ software. It uses the CYSCKIT-

Training material on GitHub 062-43012 kit to demonstrate a variety of applications and features including MCU peripherals, FreeRTOS, Wi-Fi, Bluetooth®, and low power.

Eclipse IDE quick start guide This is a short step-by-step guide specifically for using the Eclipse-based IDE to create and build applications.
Eclipse IDE user guide This guide also focuses on the Eclipse IDE, covering more details about the IDE and software features.

Eclipse survival guide This document is also online only. It offers tips on using the Eclipse environment.

EULA End user license agreement; provided on disk as part of installation.

Configurator and tool documents

These documents are located in the "tools" directory in each individual configurator and tool "docs™ subfolder.

1.3.3 IDE support

The ModusToolbox™ installer includes an optional Eclipse IDE that is a full-featured, cross-platform IDE. The
ModusToolbox™ build system also provides support for Visual Studio (VS) Code, IAR Embedded Workbench,
and Keil pVision. See the Exporting to supported IDEs section later in this document for more details.

User Guide 9 of 107 002-29893 Rev. *R
2023-01-23

o _.
ModusToolbox™ tools package user guide | N f| neon

Introduction

1.3.4 Tools

The tools_3.0 directory includes the following configurators, tools, and utilities:

i tools_3.0
bsp-assistant
bt-configurator
capsense-configurator
cymcuelftool-1.0
device-configurator
dfuh-tool
driver_media
ez-pd-configurator
fw-loader
gcc
jre
kp-firmware
library-manager
lin-configurator
make
modus-shell
mtbgetlibs
mitbideexport
mtblaunch
mtbquery
mtbsearch
openocd
project-creator
proxy-helper
python
gspi-configurater
secure-policy-configurator
seglcd-configurator
smartie-configurator
srecord

ushdev-configurator

1.3.4.1 Configurators

Each configurator is a cross-platform tool that allows you to set configuration options for the corresponding
hardware peripheral or library. When you save a configuration, the tool generates the C code and/or a
configuration file used to initialize the hardware or library with the desired configuration.

Configurators are independent of each other, but they can be used together to provide flexible configuration
options. They can be used stand alone, in conjunction with other configurators, or as part of a complete
application. All of them are installed during the ModusToolbox™ installation. Each configurator provides a
separate guide, available from the configurator's Help menu.

Configurators perform tasks such as:

e Displaying a user interface for editing parameters
e Setting up connections such as pins and clocks for a peripheral

e Generating code to configure middleware
Note: Some configurators may not be useful for your application.
Configurators store configuration data in an XML data file that provides the desired configuration. Each

configurator has a "command line" mode that can regenerate source based on the XML data file. Configurators
are divided into two types: BSP Configurators and Library Configurators.

User Guide 10 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | n f| neon

Introduction

The following diagram shows a high-level view of the configurators that could be used in a typical application.

| Typical Application ‘

Project ‘

— main.c

—| bsps ‘
TARGET_<bsp_name> ‘
BSP Configurators
config ‘
— design.modus - Device _:: > Smart1/0
& - “| configurator [« Configurator
I
i i SPI
[destgncyasel - o Con‘ggurator
I I
i SegLCD
f— design.cysegled - > Confi:urator -
 ——
— design.cycapsense - CAPSENSE™ |
sn-eveap - “| configurator :_ ____________________ | CA:if::fEm
¢/ hfiles [T 1 1

—{ GeneratedSource ‘4—4—4—4—l—|—|—|

Library Configurators

Bluetooth®

— ign.cybt -t i
design.cy Configurator

\j

UsB

- ien. B e —
design.cyusbdev » Configurator

LIN

| design.cyli <1 > i
esign.cylin < “| configurator

\J

EZ-PD™

|— design.cyezpd - Configurator

\J

] “Secul-'e Policy”
Configurator

— design.secure -

A

.c/.hfiles

—I GeneratedSource

BSP configurators

BSP configurators configure the hardware on a specific device. This can be a board provided by us, a partner, or
a board that you create that is specific to your application. Some of these configurators interact with the
design.modus file to store and communicate configuration settings between different configurators. Code
generated by a BSP Configurator is stored in a directory named GeneratedSource, which is in the same directory
as the design.modus file. This is generally located in the BSP for a given target board. Some of the BSP
configurators include:

¢ Device Configurator: Set up the system (platform) functions such as pins, interrupts, clocks, and DMA, as
well as the basic peripherals, including UART, Timer, etc. Refer to the Device Configurator user guide for
more details.

e CAPSENSE™ Configurator: Configure CAPSENSE™ hardware, and generate the required firmware. This
includes tasks such as mapping pins to sensors and how the sensors are scanned. Refer to the CAPSENSE™
Configurator user guide for more details.

There is also a CAPSENSE™ Tuner to adjust performance and sensitivity of CAPSENSE™ widgets on the
board connected to your computer. Refer to the CAPSENSE™ Tuner user guide for more details.

e QSPI Configurator: Configure external memory and generate the required firmware. This includes defining
and configuring what external memories are being communicated with. Refer to the QSPI Configurator user
guide for more details.

User Guide 11 of 107 002-29893 Rev. *R
2023-01-23

https://www.infineon.com/ModusToolboxDeviceConfig
https://www.infineon.com/ModusToolboxCapSenseConfig
https://www.infineon.com/ModusToolboxCapSenseConfig
https://www.infineon.com/ModusToolboxCapSenseTuner
https://www.infineon.com/ModusToolboxQSPIConfig
https://www.infineon.com/ModusToolboxQSPIConfig

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Introduction

e Smart1/0 Configurator: Configure the Smart I/0. This includes Chip, I/0, Data Unit, and LUT signals
between port pins and the HSIOM. Refer to the Smart I/O Configurator user guide for more details.

e SegLCD Configurator: Configure LCD displays. This configuration defines a matrix Seg LCD connection and
allows you to setup the connections and easily write to the display. Refer to the SeglL.CD Configurator user
guide for more details.

Library configurators

Library configurators support configuring application middleware. Library configurators do not read nor
depend on the design.modus file. They generally create data structures to be consumed by software libraries.
These data structures are specific to the software library and independent of the hardware. Configuration data
is stored in a configurator-specific XML file (for example, *.cybt, *.cyusbdev, etc.). Any source code generated by
the configurator is stored in a GeneratedSource directory in the same directory as the XML file. The Library
configurators include:

o Bluetooth® Configurator: Configure Bluetooth® settings. These include options for specifying what
services and profiles to use and what features to offer by creating SDP and/or GATT databases in generated
code. This configurator supports both PSoC™ MCU and AIROC™ Bluetooth® applications. Refer to the
Bluetooth® Configurator user guide for more details.

e USB Configurator: Configure USB settings and generate the required firmware. This includes options for
defining the Device Descriptor and Settings. Refer to the USB Configurator user guide for more details.

¢ LIN Configurator: Configure various LIN settings, such as frames and signals, and generate the required
firmware. Refer to the LIN Configurator user guide for more details.

e EZ-PD™ Configurator: Configure the features and parameters of the PDStack middleware for PMG1 family
of devices. Refer to the EZ-PD™ Configurator user guide for more details.

e Secure Policy Configurator: Open, create, and change policy configuration files for PSoC™ 64 "Secure
Boot" MCU devices. Refer to the Secure Policy Configurator user guide for more details.

1.3.4.2 Other tools

ModusToolbox™ software includes other tools that provide support for application creation, device firmware
updates, and so on. All tools are installed by the ModusToolbox™ tools package installer. With rare exception
each tool has a user guide located in the docs directory beside the tool itself. Most user guides are also available
online.

Other tools Details Documentation
project-creator Create a new application. user guide
library-manager | Add and remove libraries and BSPs used in an application; edits the Makefile. user guide
bsp-assistant Create and update BSPs. user guide
cymcuelftool Older tool used to merge CM0O+ and CM4 application images into a single user guide isin

executable. Typically launched from a post-build script. This tool is not used by the tool’s docs

most applications. directory
dfuh-tool Communicate with a PSoC™ 6 MCU that has already been programmed with an user guide

application that includes device firmware update capability. Provided as a GUI and

a command-line tool. Depending on the ecosystem you target, there may be other

over-the-air firmware update tools available.

User Guide 12 of 107 002-29893 Rev. *R
2023-01-23

https://www.infineon.com/ModusToolboxSmartIOConfig
http://www.infineon.com/ModusToolboxSegLCDConfig
http://www.infineon.com/ModusToolboxSegLCDConfig
https://www.infineon.com/ModusToolboxBLEConfig
https://www.infineon.com/ModusToolboxUSBConfig
https://www.infineon.com/ModusToolboxLINConfig
https://www.infineon.com/ModusToolboxEZ-PDConfig
https://www.infineon.com/ModusToolboxSecurePolicyConfig
https://www.infineon.com/modustoolbox
http://www.infineon.com/ModusToolboxProjectCreatorGuide
http://www.infineon.com/ModusToolboxLibraryManagerGuide
http://www.infineon.com/ModusToolboxBSPAssistant
https://www.infineon.com/ModusToolboxDFUHostTool

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Introduction

1.3.4.3 Utilities

ModusToolbox™ software includes some additional utilities that are often necessary for application
development. In general, you use these utilities transparently.

Utility Description

GCC Supported toolchain included with the ModusToolbox™ installer.

GDB The GNU Project Debugger is installed as part of GCC.

JRE Java Runtime Environment; required by the Eclipse IDE integration layer.

SRecord Collection of tools for manipulating EPROM load files. This is used to merge multi-core application
images into a combined programmable HEX image.

1.3.4.4 Build system infrastructure

The build system infrastructure is the fundamental resource in ModusToolbox™ software. It serves three
primary purposes:

e create an application, update and clone dependencies

e create an executable

e provide debug capabilities
A Makefile defines everything required for your application, including:

e target hardware (board/BSP to use)

e source code and libraries to use for the application

e ModusToolbox™ tools version, as well as compiler toolchain to use
e compiler/assembler/linker flags to control the build

e assorted variables to define things like file and directory locations

The build system automatically discovers all .c, .h, .cpp, .s, .a, .o files in the application directory and
subdirectories, and uses them in the application. The Makefile can also discover files outside the application
directory. You can add another directory using the cy SHAREDLIB PATH variable. You can also explicitly list
filesin the SOURCES and INCLUDES make variables.

Each library used in the application is identified by a.mtb file. This file contains the URL to a git repository, a
commit tag, and a variable for where to put the library on disk. For example, a capsense.mtb file might contain
the following line:

http://github.com/cypresssemiconductorco/capsensef#latest-
v2.X#$SSASSET REPOSS/capsense/latest-v2.X

The build system implements the make getlibs command. This command finds each.mtb file, clones the
specified repository, checks out the specified commit, and collects all the files into the specified directory.
Typically, themake getlibs command isinvoked transparently when you create an application or use the
Library Manager, although you can invoke the command directly from a command line interface. See
ModusToolbox™ build system for detailed documentation on the build system infrastructure.

User Guide 13 of 107 002-29893 Rev. *R
2023-01-23

ModusToolbox™ tools package user guide

infineon

Introduction

1.3.4.5 Program and debug support

ModusToolbox™ software supports the Open On-Chip Debugger (OpenOCD) using a GDB server, and supports
the J-Link debug probe.

You can use various IDEs to program devices and establish a debug session (see Exporting to supported IDEs).
For programming, CYPRESS™ Programmer is available separately. It is a cross-platform application for
programming PSoC™ 6 devices. It can program, erase, verify, and read the flash of the target device.

Cypress Programmer and the Eclipse IDE use KitProg3 low-level communication firmware. The firmware loader
(fw-loader) is a software tool you can use to update KitProg3 firmware, if you need to do so. The fw-loader tool
is installed with the ModusToolbox™ software. The latest version of the tool is also available separately in a
GitHub repository.

Tool Description Documentation
CYPRESS™ CYPRESS™ Programmer functionality is built into ModusToolbox™ Software. | Programming tools
Programmer CYPRESS™ Programmer is also available as a stand-alone tool. page, go to the
documentation tab
fw-loader A simple command line tool to identify which version of KitProg is on a kit, readme.txt file in
and easily switch back and forth between legacy KitProg2 and current the tool directory
KitProg3.
KitProg3 This tool is managed by fw-loader, it is not available separately. KitProg3isa | user guide
low-level communication/debug firmware that supports CMSIS-
DAPDAPLink. Use fw-loader to upgrade your kit to KitProg3, if needed.
OpenOCD Our specific implementation of OpenOCD is installed with ModusToolbox™ developer’s guide
software.
DAPLink Support is implemented through KitProg3 DAPLink handbook
1.4 Product versioning

ModusToolbox™ products include tools and firmware that can be used individually, or as a group, to develop
connected applications for our devices. We understand that you want to pick and choose the ModusToolbox™
products you use, merge them into your own flows, and develop applications in ways we cannot predict.
However, it is important to understand that every tool and library may have more than one version. The tools
package that provides the set of tools also has its own version. This section describes how ModusToolbox™
products are versioned.

14.1

General philosophy

ModusToolbox™ software is not a monolithic entity. Libraries and tools in the context of ModusToolbox™ are
effectively "mini-products" with their own release schedules, upstream dependencies, and downstream
dependent assets and applications. We deliver libraries via GitHub, and we deliver tools though the
ModusToolbox™ installation package.

All ModusToolbox™ products developed by us follow the standard versioning scheme:

o Ifthere are known backward compatibility breaks, the major version is incremented.

e Minorversion changes may introduce new features and functionality, but are "drop-in" compatible.

e Patch version changes address minor defects. They are very low-risk (fix the essential defect without
unnecessary complexity).

Code Examples include various libraries automatically. Prior to the ModusToolbox™ 2.3 release, these libraries
were typically the latest versions. From the 2.3 release and newer, when you create a new application from a

User Guide

14 of 107

002-29893 Rev. *R
2023-01-23

http://openocd.org/doc/doxygen/html/index.html
https://www.infineon.com/products/psoc-programming-solutions
https://github.com/Infineon/Firmware-loader
https://www.infineon.com/products/psoc-programming-solutions
https://www.infineon.com/documentation/development-kitsboards/kitprog-user-guide
http://openocd.org/doc/doxygen/html/index.html
https://os.mbed.com/handbook/DAPLink

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Introduction

code example, any of the included libraries specified with a "latest-style" tag are converted to the "release-
vX.Y.Z" style tag.

If you use the Library Manager to add a library to your project, the tool automatically finds and adds any
required dependent libraries. From the 2.3 release and newer using the MTB flow, these dependencies are
created using "release-vX.Y.Z" style tags. The tool also creates and updates a file named locking_commit.log in
the deps subdirectory inside your application directory. This file maintains a history of all latest to release
conversions made to ensure consistency with any libraries added in the future.

1.4.2 Tools package versioning

The ModusToolbox™ tools installation package is versioned as MAJOR.MINOR.PATCH. The file located at
<install_path>/ModusToolbox/tools_3.0/version-3.0.0.xml also indicates the build number.

Every MAJOR.MINOR version of a ModusToolbox™ product is installed by default into
<install_path>/ModusToolbox. So, if you have multiple versions of ModusToolbox™ software installed, they are
allinstalled in parallel in the same ModusToolbox directory, as follows:

v ModusToolbox
docs 2.4
docs 3.0
ide_2.4
ide_3.0
packs
tools_2.4

tools_3.0

1.4.3 Multiple tools versions installed

When you run make commands from the command line, a message displays if you have multiple versions of the
"tools" directory installed and if you have not specified a version to use.

E¥ ~/mtw3.0/7081/hw/Hello_World - [m] X

User Guide 15 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Introduction

1.4.4 Specifying alternate tools version

By default, the ModusToolbox™ software uses the most current version of the tools_<version> directory
installed. That s, if you have ModusToolbox™ versions 3.0 and 2.4 installed, and if you launch the Eclipse IDE
from the ModusToolbox™ 2.4 installation, the IDE will use the tools from the tools_3.0 directory to launch
configurators and build an application. This section describes how to specify the path to the desired version.

1.4.4.1 Environment variable

The overall way to specify a path other than the default "tools" directory, is to use a system variable named
CY TOOLS_ PATHS. On Windows, open the Environment Variables dialog, and create a new System/User
Variable:

Edit System Variable X
Variable name: | CV_TOOLS_PATHS |
Variable value: | C:/Users/follettcj/ModusToolbox/tools_2.4/] |
Browse Directory... Browse File... Cancel
Note: Use a Windows style path, (that is, not like /cygdrive/c/). Also, use forward slashes. For example:

C:/Users/XYZ/ModusToolbox/tools_2.4/
Use the appropriate method for setting variables in macOS and Linux for your system.

1.4.4.2 Specific project Makefile

To preserve a specific "tools" path for the specific project, edit that project’s Makefile, as follows:

If you install the IDE in a custom location, add the path to its

"tools X.Y" folder (where X and Y are the version number of the tools
folder).

CY TOOLS PATHS+=C:/Users/XYZ/ModusToolbox/tools 2.3

1.4.5 Tools and configurators versioning

Every tool and configurator follow the standard versioning scheme and include a version.xml file that also
contains a build number.

1.4.5.1 Configurator messages

Configurators indicate if you are about to modify the configuration file (for example, design.modus) with a
newer version of the configurator, as well as if there is a risk that you will no longer be able to open it with the
previous version of the configurator:

An older file format was detected. The file can be safely viewed but saving the file
! in this tool will update its format making it no longer open in older tools,
P 9 QEREp

Last saved with: Tools Package 1.1
Current: Tools Package 2.2.0.2468 (C:/Users/CKF/ModusToolbox/tools_2.2)

C/Users/CKF/mtw1.1/234/new-test/BlinkyLED_mainapp/design.modus

oK

User Guide 16 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Introduction

Configurators will also indicate if you are trying to open the existing configuration with a different, backward
and forward compatible version of the Configurator.

Motice List g X
oO Errors I 0Warnings UOTasks oﬁlnfos
Fix Description Location
(i] There are reserved routing resources. See the Analog Route Editor for more information. CYW4343WKUBG: Routing Resources
i] There are reserved routing resources. See the Analeg Route Editor for more information. CY8CE247BZ1-D54: Routing Resources
0 The design file was last saved with a different version of the tools than will be used to perform code generation on save. Last saved with: Configurator Backend 4 4
2.2.0.2790. Current: Configurator Backend 3.0.0. esign.modus
© The Device-wake-up pin must be connected when the system is configured for Deep Sleep power state. CYWA4343WKUBG: BT [Device-Wake-Up Signal]
(i] The Host-wake-up pin must be connected when the system is configured for Deep Sleep power state, CYW4343WKUBG: BT [Host-Wake-Up Signal]
The WICO is enabled. Chip startup will be slower because clock configuration cannot continue until the WCO is ready. See the device datasheet for WCO startup !
© iming. 1WCO is not required during startup, consider starting # in maing) for faster chip startup. RS IEY
Note: If using the command line, the build system will notify you with the same message.
.
1.4.6 GitHub libraries versioning

GitHub libraries follow the same versioning scheme: MAJOR.MINOR.PATCH. The GitHub libraries, besides the
code itself, also provide two files in MD format: README and RELEASE. The latter includes the version and the
change history.

The versioning for GitHub libraries is implemented using GitHub tags. These tags are captured in the manifest
files (see the Manifest files chapter for more details). The Project Creator tool parses the manifests to determine
which BSPs and applications are available to select. The Library Manager tool parses the manifests and allow
you to see and select between various tags of these libraries. When selecting a particular library of a particular
version, the.mtb file gets created in your project. These .mtb files are a link to the specific tag. Refer to the
Library Manager user guide for more details about tags.

Once complete with initial development for your project, if using the git clone method to create the
application instead of the Project Creator tool, we recommend you switch to specific "release" tags. Otherwise,
running the make getlibs command will update the libraries referenced by the .mtb files, and will deliver the
latest code changes for the major version.

1.4.7 Dependencies between libraries

The following diagram shows the dependencies between libraries.

GitHub
[bsp.git | | mtb-hal-catl.git I
[core-lib.git | | retarget-io.git |
[core-make.git | | Ce |
\ \ \ Y Yy
release XYZ
all tags ModusToolbox™ manifests
latest.release.XYZ —
A
Application BSP
Project
core-lib.mtb Creator
All point to Update the
GitHub core-make.mtb t2gs
mth-hal-catl.mtb Library
retarget-io-mtb Manager
User Guide 17 of 107 002-29893 Rev. *R

2023-01-23

http://www.infineon.com/ModusToolboxLibraryManager

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Introduction

There are dependencies between the libraries. There are two types of dependencies:

1.4.7.1 Git repo dependencies via .mtb files

Dependencies for various libraries are specified in the manifest file. Only the top-level application will have
.mtb files for the libraries it directly includes.

1.4.7.2 Regular C dependencies via #include

Our libraries only call the documented public interface of other Libraries. Every library declares its version in
the header. The consumer of the library including the header checks if the version is supported, and will notify
via #error if the newer version is required. Examples of the dependencies:

o The Device Support library (PDL) driver is used by the Middleware.

e The configuration generated by the Configurator depends on the versions of the device support library
(PDL) or on the Middleware headers.

Similarly, if the configuration generated by the configurator of the newer version than you have installed, the
notification via the build system will trigger asking you to install the newer version of the ModusToolbox™
software, which has a fragmented distribution model. You are allowed and empowered to update libraries
individually.

1.5 Partner ecosystems

To support Infineon microcontrollers in our partner ecosystems, some tools and middleware from
ModusToolbox™ software are also integrated into Amazon FreeRTOS. Refer to aws.amazon.com/freertos to
learn more about developing applications in those environments.

User Guide 18 of 107 002-29893 Rev. *R
2023-01-23

aws.amazon.com/freertos

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Getting started

2 Getting started

ModusToolbox™ software provides various graphical user interface (GUI) and command-line interface (CLI)
tools to create and configure applications the way you want. You can use the included Eclipse-based IDE, which
provides an integrated flow with all the ModusToolbox™ tools. Or you can use other IDEs, such as VS Code,or no
IDE at all. Plus, you can switch between GUI and CLI tools in various ways to fit your design flow. Regardless of
what tools you use, the basic flow for getting started with ModusToolbox™ software includes these tasks:

e Install and configure software

e Open help documentation

e Create applications from examples

e Understand application structures

e Build and program

This chapter helps you get started using various ModusToolbox™ tools. It covers these tasks, showing both the
GUIl and CLI options available.

2.1 Install and configure software
The ModusToolbox™ tools package is located on our website:

https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/

You can install the software on Windows, Linux, and macOS. Refer to the ModusToolbox™ tools package
installation guide for specific instructions.

e For Windows and macOS, the installer will detect if you have the necessary tools. If not, it will prompt you
to install them using the appropriate system tools.

e For Linux, there is only a ZIP file, and you are expected to understand how to set up various tools for your
chosen operating system.

2.1.1 GUI set-up instructions

In general, the IDE and other GUI-based tools included as part of the ModusToolbox™ tools package work out of
the box without any changes required. Simply launch the executable for the applicable GUI tool. On Windows,
most tools are on the Start menu.

2.1.2 CLI set-up instructions
Before using the CLI tools, ensure that the environment is set up correctly. To check your installation, open the

appropriate command-line terminal for your operating system.

Note: For Windows, the tools package provides a command-line utility called "modus-shell." You can
run this from the Start menu ModusToolbox 3.0 > modus-shell, or type "modus-shell" in the
Windows search box.

e Typewhich make.For most environments, it should return /usr/bin/make.

e Typewhich git.Formostenvironments,itshould return /usr/bin/git.

If these commands return the appropriate paths, then you can begin using the CLI. Otherwise, install and
configure the GNU make and git packages as appropriate for your environment.

User Guide 19 of 107 002-29893 Rev. *R
2023-01-23

https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-product_families
http://www.infineon.com/ModusToolboxInstallGuide
http://www.infineon.com/ModusToolboxInstallGuide

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Getting started

2.2 Open help documentation

In addition to this user guide, we provide documentation for both GUI and CLI tools. GUI tool documentation is
generally available from the tool’s Help menu. CLI documentation is available using the tool’s -h option.

2.2.1 GUI documentation

2.2.1.1 Eclipse IDE

If you use the integrated Eclipse IDE, see the Eclipse IDE for ModusToolbox™ quick start guide for getting
started information, and see the Eclipse IDE for ModusToolbox™ user guide for additional details.

2.2.1.2 Other IDEs

ModusToolbox™ software is fully supported using 3 party IDEs including VS Code, IAR EWARM, and Keil
uVision. Those IDEs provide their own documentation. We provide exporting instructions and some basic
examples. Refer to Exporting to supported IDEs for more details.

2.2.1.3 Configurator and tool guides

Each GUI-based configurator and tool includes a user guide that describes different elements of the tool, as
well as how to use them. See Installation resources for descriptions of these tools and links to the
documentation.

2.2.2 CLI documentation

Various CLI tools include a -h option that prints help information to the screen about that tool. For example,
running this command prints output for the Project Creator CLI tool to the screen:

./project-creator-cli -h

B ~/ModusTaalbox/tools_3.0/project-creator - m] x

y the name of the cation other than the t = ult name

User Guide 20 of 107 002-29893 Rev. *R
2023-01-23

http://www.infineon.com/ModusToolboxQSG
https://www.infineon.com/MTBEclipseIDEUserGuide

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Getting started

Nearly all CLI tools provide help information in this way. Other CLI tools either provide a user guide or are not
intended to be used directly.

Note: The ModusToolbox™ build system includes a make help target that also provides command line
help documentation. For more details, refer to the ModusToolbox™ build system chapter.

2.3 Create application from template

ModusToolbox™ software includes the Project Creator as both a GUI tool and a command line tool to easily
create ModusToolbox™ applications. The Project Creator tool clones the selected BSP and code example
template(s), and then creates the directory structure at the specified location with the specified name. The
Project Creator tools also run the required processes to download and import all the necessary libraries and
dependencies.

Note: This section describes creating a new application from a template. The process to import or share
an existing application is covered in the Using applications with third-party tools chapter.

2.3.1 Project Creator GUI

The Project Creator GUI tool provides a series of screens to select a BSP and code example template(s), specify
the application name and location, as well as select the target IDE. The tool displays various messages during
the application creation process.

Open the Project Creator GUI tool from the Windows Start menu or as applicable for your operating system.
The executable file is installed in the following directory, by default:

<install_path>/ModusToolbox/tools_3.0/project-creator/

| Choose Board Support Package (BSP) - Project Creator 2.0 -] X
Settings Help

Source Template

Enter filter text Browse.. | [5] [# | CYBCKIT-DE2-WIFI-BT
Kit Name MCU/SOC/SIP Connectivity || The PSaC™ 6 WiFi-BT Pioneer Kit is a low-cost
AROC Blustooth® B5Ps e Poa 62 MCU(CYSCRATEE) Do) the et
- e PSol 7BZI-D54) and the Murata
':‘SEOCE ACBESZ‘E““"“’ Bsps LBEESKL1DX Module (CYWA343W WiFi + Bluetooth
Combo Chip).

v PSoC™ 6 BSPs
CYBCEVAL-D6252 CYBCH24ABZI-52044 <nonex Kit Features:
CYBCEVAL-DG252-CYWO43420M2IPAT CYEC624ABZI-52044 LEEESKLTYN [CYW43439KUBG)
CYBCEVAL-06252-LAI-4373M2 CYBCH24ABZI-52044 Sterling-LWES+ (CYW43T3EUBGT) *BLEvS.D
CYBCEVAL-D6252-MUR-43439M2 CYBCE24ABZI-52D44 LBEESKL1YN (CYW43439KUBG) . Serial memory interface)

PDM-PCM digital microphone interface
CYBCKIT-062-BLE CYBCH34TRZI-BLDS3 <nonex + Industry-leading CAPSENSE
CYBCKIT-06252-43012 CYBCG24ABZI-52044 LBEESSB1LV (CYW43012C0WKWEG) * Full-speed USE
CYBCKIT-06254 CY¥8C6244LQ1-54D92 <none> ® [EEE 802.11a/b/g/n WLAN
CYBCKIT-062-WIFI-BT CYBCE247BZI-D54 LBEESKL1DX (CYW4343WKUBG)
CYBCKIT-064B052-4343W CYBOGA4ARTI-S2D44 LBEESKL1DX (CYW4343WKUBG] Kit Contents:
CYBCKIT-0645052-4343W CYSOBMABZI-52044 LBEESKL1DX (CYW4343WKUBG) « CYBCKIT-062-WIFI-BT evaluation hoard
CYBCPROTD-062-4343W CYBCH24ABZI-52044 LBEESKL1DX (CYW4343WKUBG] o TFT display shield with a 2.4" TFT display, light
CYBCPROTO-06253-4343W CY¥BCE245L01-53072 LBEESKL1DX (CYW4343WKUBG) sensor, 6-axis motion sensor, and digital
CYBCPROTD-063-BLE CYBLE-416045-02 (CYBCE347B71-BLDS3) CYBLE-416045-02 (CYBCA34TRZI-BLDS3) microphane
CYECPROTO-0648051-BLE CYBLE-416070-02 (CYBOS447BZI-BLDS3) CYBLE-416070-02 (CYBOSA47BZI-BLDS3) * USB cable
CYBCPROTO-064B051-554 CYBOG44TEZI-D54 <none>
CYECPROTO-0648051-555 CYBOGMTBZI-D54 <none> v
Summary: A

BSP: CYBCKIT-062-WIFI-BT

Press "Mext" to select application. v

Next > Close

23

Refer to the Project Creator user guide for more details.

Note: The Target IDE option (on the Select Application page) is used to generate necessary files for the
selected IDE. If you launch the Project Creator GUI tool from the included Eclipse-based IDE, the
tool seamlessly exports the created application for use in the Eclipse IDE.

User Guide 21 0f 107 002-29893 Rev. *R
2023-01-23

http://www.infineon.com/ModusToolboxProjectCreator

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Getting started

2.3.2 project-creator-cli

You can also use the project-creator-cli tool to create applications from a command-line prompt or from within
batch files or shell scripts. The tool is located in the same directory as the GUI version
(<install_path>/ModusToolbox/tools_3.0/project-creator/). To see all the options available, run the tool with the
-h option:

./project-creator-cli -h

The following example shows running the tool with various options.

./project-creator-cli \
--board-id CY8CKIT-062-WIFI-BT \
--app-id mtb-example-psoc6-hello-world \
--user-app-name MyLED \
--target-dir "C:/my projects"

In this example, the project-creator-cli tool clones the Hello World code example template from our GitHub
server (https://github.com/Infineon). It also updates the TARGET variable in the Makefile to match the selected
BSP

(--board-id), and obtains the necessary library files. This example also includes options to specify the name
(--user-app-name) and location (--target-dir) where the application will be stored.

Note: Youcanrunthe git cloneandmake getlibscommands directly from aterminal; however, we
recommend using the Project Creator tools (GUI or CLI) because some applications require
additional processes to acquire all the submodules. If you choose to run the commands manually,
make sure you thoroughly understand all the requirements of the selected application. Refer to
the code example README.md file for details as needed.

2.4 Understand application structures

After creating one or more applications, they will be located in a top-level container, or workspace directory,
that contains a project creation log file, one or more application directories, plus a mtb_shared directory.
Depending on the example you chose to create the application, it can be either single-core or multi-core.

w Workspace
=| project-creator.log
Application-1
Application-2
mtb_shared

24.1 Version 2.x BSPs/applications versus 3.x BSPs/applications

At the time of the ModusToolbox™ 3.0 tools package release, some code examples still create ModusToolbox™
2.x format BSPs and applications. These 2.x applications, as well as any you created using ModusToolbox™
versions 2.2 through 2.4, fully function in the 3.x ecosystem. The following table highlights a few key differences
between 2.x BSPs/applications and 3.x BSPs/applications:

Item Version 2.x Version 3.x
BSP Assistant usage Not applicable Creates and updates 3.x BSPs
Default BSP type Git repo, to make changes requires custom Application-owned, can be directly
BSP modified
Local BSP location Under the libs directory Under the bsps directory
User Guide 22 of 107 002-29893 Rev. *R

2023-01-23

https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Getting started

Item Version 2.x Version 3.x
design.modus file location libs/COMPONENT_BSP_DESIGN_MODUS bsps/config subdirectory
subdirectory
Makefile MTB_TYPE variable | Notapplicable Identifies single-core vs. multi-core
applications

This user guide focuses on the 3.x application structure. For more details about 2.x applications and BSPs, refer
to the older revision of this user guide, located in the docs_2.4 directory of the ModusToolbox™ 2.4 installation.

To take full advantage of the newest features, you can easily migrate version 2.x applications to the 3.x
structure following Knowledge Base Article KBA236134. This KBA provides instructions for replacing your BSP
and associated libraries with compatible versions for 3.x.

Note: You cannot mix and match version 2.x format applications with 3.x format BSPs, or vice-versa.

2.4.2 Single-core 3.x application

A typical single-core 3.x application, such as "Hello World," is one project directory with application source
code, a Makefile, and assorted files, in addition to the bsps, deps, images, and libs subdirectories. A single-core
application uses the ModusToolbox™ build system to produce a single ELF file for use on a single-core MCU.

w Hello_World
=| .gitignore
| LICEMSE

main.c

| Makefile

v bsps
TARGET_APP_CYBCPROTO-D62-4343W
deps
images

libs

mth_shared

The following describe the contents for a single-core project directory:

o .gitignore file - This file contains information about files for Git to ignore such as common, tool- or user-
specific files that are typically not checked into a version control system.

e LICENSE file - This is the license agreement.

e Source code - This is one or more files for your project's code. Often it is named main.c, but it could be
more than one file and the files could have almost any name. Source code files can also be grouped into a
subdirectory anywhere in the application's directory (for example, sources/main.c).

e Makefile - This is the project's Makefile, which contains configuration information such as TARGET for the
BSP, ToOLCHAIN, and MTB TYPE for the type of application; in this case, COMBINED.

e README.md file - This file describes the code example that was used to create the project.
e bsps subdirectory - This directory contains one or more BSPs for this specific project.

o deps subdirectory - By default, this subdirectory contains <library>.mtb files for libraries that were
included directly or for which you changed using the Library Manager.

e This subdirectory also contains the locking_commit.log file, which keeps track of the version for each
dependent library.

User Guide 23 of 107 002-29893 Rev. *R
2023-01-23

https://community.infineon.com/t5/Knowledge-Base-Articles/Migrating-ModusToolbox-applications-from-version-2-x-to-version-3-x-KBA236134/ta-p/374825

o _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Getting started

e images subdirectory - If a project has images used by the README.md file, for example, this directory
contains those images.

o libs subdirectory - This subdirectory may contain different types of files generated by the project creation
process, based on how the project is created. You can regenerate these files using the Library Manager, so
you do not need to add these files to source control.

¢ If you update your project to specify any libraries to be local, then this directory will contain source
code for those libraries.

e By default, this subdirectory contains the <library>.mtb files for libraries included as indirect
dependencies of the BSP or other libraries.

e This directory also contains the mtb.mk file that lists the shared libraries and their versions.

Note: If an application needs to modify a standard BSP's configuration, then it will include a templates
directory with various BSP templates, which contain configuration files (for example,
design.modus) and a reserved resources list. If an application uses the BSP's configuration as-is,
then it won’t include a templates directory.

2.4.3 Multi-core 3.x application

A multi-core 3.x application, such as "Dual-CPU_Empty_PSoC6_App," includes three makefiles and various
assorted files described under single-core 3.x application. It also contains separate subdirectories for each of
the core projects, plus the bsps subdirectory that applies to all the core projects in the application. A multi-core
application directory hierarchy builds multiple ELF files for various purposes (for example, to support boot
loading, multi-core support, or secure enclave scenarios).

v Dual-CPU_Empty_P5oCE_App
=| .gitignore

| LICENSE
| Makefile

v bsps
TARGET_APP_CYBCPROTO-D62-4343W-NEW
v proj_cmip
main.c
| Makefile
| README.md
deps
libs
v proj_cméd
main.c

| Makefile

deps
libs

mitb_shared

User Guide 24 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Getting started

2.4.3.1 Multi-core application directory
A multi-core application directory contains the following files and subdirectories:

e Makefile - The application Makefile contains the MTB_TYPE variable set to APPLICATION, plus the
MTB_PROJECTS variable to specify the included projects. This file also includes the common_app.mk file
and the path information to the application.mk file in the installation tools_<version> directory. This is
responsible for forwarding build related requests to the individual core projects and dealing with post-build
activities (for example, generating single monolithic HEX files that can be used to program all projects
simultaneously) when they are complete.

e common.mk - This makefile is shared across all projects. It contains variables including: MTB_TYPE,
TARGET, TOOLCHAIN, and CONFIG. In this case, MTB TYPE=PROJECT. This file also includes a reference to
the common_app.mk file.

e common_app.mk - This makefile is shared across the entire application and all its projects. It contains
path information to indicate the location of the installation tools_<version> directory.

e bsps subdirectory - This contains one or more BSPs for all projects in the multi-core application.

e Multi-core project subdirectories - These contain the source code and Makefile for each specific core
project. The name format is proj_<core>; for example, "proj_cm7_0" or "proj_cmOp".

2.4.3.2 Multi-core project directories

Each multi-core project directory contains its own project Makefile that is responsible for compiling and linking
asingle ELF image. Multi-core project directories are similar to single-core project directories in that they
contain source code, as well as libs and deps subdirectories. One main difference is that multi-core project
directories do not have a bsps subdirectory, because they use the same BSP from the multi-core application
directory.

e Source code - This is one or more files for the core project's code.

e Makefile - This is the core project's Makefile. It includes numerous variables used for the projects, such as
COMPONENTS, CORE, CORE_NAME, and other variables used to specify flags and pre-build and post-build
commands. This file also includes path information for source code discovery, shared repo location, and
path to the complier. Plus, it includes the common.mk file from the application and the path information to
the start.mk file in the installation tools_<version> directory.

o README.md file - This file contains information for the specific core project.

o deps subdirectory - By default, this subdirectory contains <library=.mtb files for libraries that were
included directly or for which you changed using the Library Manager.

e This subdirectory also contains the locking_commit.log file, which keeps track of the version for each
dependent library.

o libs subdirectory - This subdirectory may contain different types of files generated by the project creation
process, based on how the project is created. You can regenerate these files using the Library Manager, so
you do not need to add these files to source control.

e Ifyou update your project to specify any libraries to be local, then this directory will contain source
code for those libraries.

e By default, this subdirectory contains the <library>.mtb files for libraries included as indirect
dependencies of the BSP or other libraries.

e This directory also contains the mtb.mk file that lists the shared libraries and their versions.

User Guide 25 0of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Getting started

2.4.4 mtb_shared directory

Each workspace you create with one or more applications will also include a mtb_shared directory adjacent to
the application directories, and this is where the shared libraries are cloned by default. This location can be
modified by specifying the cy GETLIBS pPATH variable. Duplicate libraries are checked to see if they point to
the same commit, and if so, only one copy is kept in the mtb_shared directory. You can regenerate these files
using the Library Manager, so you do not need to add these files to source control.

v Workspace
Application-1
Application-2

w mtb_cshared
catlemOp
cmsis
core-lib
core-make
mth-hal-cat1
mth-pdl-catl
recipe-make-catla

retarget-io

2.5 Build and program

After the application has been created, you can export it to an IDE of your choice for building and programming.
You can also use command line tools. The ModusToolbox™ build system infrastructure provides several make
variables to control the build. So, whether you are using an IDE or command line tools, you edit the Makefile
variables as appropriate. See the ModusToolbox™ build system chapter for detailed documentation on the
build system infrastructure.

Variable Description

TARGET Specifies the target board/kit. For example, CYSCPROTO-062-4343W
APPNAME Specifies the name of the application

TOOLCHAIN | Specifies the build tools used to build the application

CONFIG Specifies the configuration option for the build [Debug Release]
VERBOSE Specifies whether the build is silent or verbose [0 - 3]

ModusToolbox™ software is tested with various versions of the TooLCcHAIN values listed in the following table.
Refer to the release information for each product for specific versions of the toolchains.

TOOLCHAIN Tools Host OS

GCC_ARM GNU Arm Embedded Compiler macOS, Windows, Linux
ARM Arm compiler Windows, Linux

IAR Embedded Workbench Windows

In the Makefile, set the TOOLCHATIN variable to the build tools of your choice. For example:
TOOLCHAIN=GCC ARM. There are also variables you can use to pass compiler and linker flags to the toolchain.

ModusToolbox™ software installs the GNU Arm toolchain and uses it by default. If you wish to use another
toolchain, you must provide it and specify the path to the tools. For example,

CY COMPILER PATH=<yourpath>.Ifthis pathis blank, the build infrastructure looks in the ModusToolbox/
install directory.

User Guide 26 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Getting started

2.5.1 Use Eclipse IDE

When using the provided Eclipse IDE, click the Build Application link in the Quick Panel for the selected
application.

[Quick Panel =g

Eclipse IDE for
ModusToolbox™

» Launches

Because the IDE relies on the build infrastructure, it does not use the standard Eclipse GUI to modify build
settings. It uses the build options specified in the Makefile. This design ensures that the behavior of the
application, its options, and the make process are consistent regardless of the development environment and
workflow.

If you do change settings in the Makefile (for example, TARGET or CONFIG), you must re-create the launch
configs using the link in the Quick Panel; refer to the Eclipse IDE for ModusToolbox™ user guide for more
details.

2.5.2 Export to another IDE

If you prefer to use an IDE other than Eclipse, you can select the appropriate IDE from the Target IDE pull-down
menu when creating an application using the Project Creator tool. You can also use the appropriate
make <ide>command. For example, to export to Visual Studio Code, run:

make vscode

For more details about using other IDEs, see the Exporting to supported IDEs section later in this document.
When working with a different IDE, you must manage the build using the features and capabilities of that IDE.

2.5.3 Use command line

2.5.3.1 make build

When the Project Creator tool finishes creating the application and imports all the required dependencies, the
application is ready to build. From the appropriate terminal, type the following:

make build

This instructs the build system to find and gather the source files in the application and initiate the build
process. In order to improve the build speed, you may parallelize it by giving it a -5 flag (optionally specifying
the number of processes to run). For example:

make build -jl6

2,5.3.2 make program
Connect the target board to the machine and type the following in the terminal:
make program

This performs an application build and then programs the application artifact (usually an .elf or .hex file) to the
board using the recipe-specific programming routine (usually OpenOCD). You may also skip the build step by
using gprogram instead of program. This will program the existing build artifact.

User Guide 27 of 107 002-29893 Rev. *R
2023-01-23

https://www.infineon.com/MTBEclipseIDEUserGuide

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Updating the example application

3 Updating the example application

After completing the process to create and build an example application and program a board, you may wish to
update the application in various ways to explore its capabilities. This chapter covers some of the basic tasks,
including:

e Update libraries

o Update BSPs
e Configure settings for devices, peripherals, and libraries

e Write application code

e Debugthe application

3.1 Update libraries

Use the Library Manager tool to add or remove BSPs and libraries for your application, as well as change
versions for libraries. You can also change the active BSP for your application.

Open the Library Manager GUI tool from the application directory using the make library-manager
command. The Library Manager opens for the selected application and its available BSPs and libraries.

| Library Manager 2.0 - m] ®
Settings Help
Application Directory: | C:/Users/follettc/mtw3.0/8297/hw/Hello_Waorld Browse...
[Enterfilter text | B Properties READMEmd Description
Name Update Available Remove | [property Value
v BSPs Version 3.00 relesse v
@ APP_CYSCKIT-062-WIFI-BT (ACTIVE) i)
~ Hello_Werld Libraries Type Shared Git Repo ~
catlcmip
emsis Location C:/Users/follettcj/mtw3.0/8287/hw/mitb_shared/core-make/release-v3.0.0
core-lib
. +//git-ore.aus. .com/repo- fcore-
| | PP ere s yprecomnepe siging/core make
mitb-hal-cat1 i MTB file location | C:/Users/follettcj/mtw3.0/B297/hw/Hello_World/libs/core-make.mtb
mtb-pdl-catl
recipe-make-catla 3
retarget-io x
udb-sdio-whd

Add BSP Add Library

—_
Found new indirect dependencies 'catlemOp, core-lib, core-make, mtb-hal-cat1, mth-pdl-cat1, recipe-make-catla, udb-sdio-whd, cmsis',
Refreshed all dependencies for project 'mtb-example-psoct-hello-world',

Successfully acquired the information.

0 error(s), 7 warning(s) v

Update Close
®
Note: There are several ways to open the Library Manager; refer to the Library Manager user guide for
more details.
User Guide 28 of 107 002-29893 Rev. *R

2023-01-23

http://www.infineon.com/ModusToolboxLibraryManager

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Updating the example application

3.2 Update BSPs

Use the BSP Assistant to change devices or add and remove configurations for the BSP in your application. The
tool offers GUl and CLI versions.

Open the BSP Assistant GUI tool from the application directory using the make bsp-assistant command.
The BSP Assistant opens for the selected BSP.

[C:/Users/follettcj/mtw3.0/8297/hw/Hello_Warld/bsps/TARGET APP_CYBCKIT-D62-WIFI-ET - BSP Assistant 1.0 - [m] X

File View Help

BSP location: | C:/Users/follettcj/mtw3.0/8297/hw/Hello_World/bsps/TARGET_APP_CYBCKIT-062-WIFI-BT ‘

=] Devices
MCU/SOC/SIP: CYBCE247B71-D54 v|
Connectivity module: Custom
Connectivity device: CYW4343WKUBG

Bluetooth communication: N/A
CMD+ pre-built firmware image: | N/A

UDB SDIO GPIO port selection: N/A

< < < < < < <

Using HAL interface: N/A
UDB-based SDIO interface: N/A
Apphy Cancel
Configurators
Dependencies
Capabilities
Finding MCUs compatible with this BSP...
mith-template-cat1 asset found at C:/Users/follettcj/.modustoolbox/global/mtb-template-cat1/release-v1.0.0 (1 ms)
mtb-pdi-cat] asset found at C:/Users/follettc)/. modustoolbox /global/mtb-pdl-cat1/release-v3.0.0 (1 ms)
MCUs compatible with this BSP found (3 ms) ~
Revert Close
Note: There are several ways to open the BSP Assistant; refer to the user guide for more details.
3.3 Configure settings for devices, peripherals, and libraries

Depending on your application, you may want to update and generate some of the configuration code. While it
is possible to write configuration code from scratch, the effort to do so is considerable. ModusToolbox™
software provides applications called configurators that make it easier to configure a hardware block or a
middleware library. For example, instead of having to search through all the documentation to configure a
serial communication block as a UART with a desired configuration, open the appropriate configurator to set
the baud rate, parity, stop bits, etc.

Before configuring your device, you must decide how your application will interact with the hardware; see
Application layers. That decision affects how you configure settings for devices, peripherals, and libraries.

The configurators can be run as GUIs to easily update various parameters and settings. Most can also be run as
command line tools to regenerate code as part of a script. For more information about configurators, see the
Configurators section. Also, each configurator provides a separate document, available from the configurator's
Help menu, that provides information about how to use the specific configurator.

User Guide 29 of 107 002-29893 Rev. *R
2023-01-23

ModusToolbox™ tools package user guide

Infineon

Updating the example application

3.3.1 Configurator GUI tools

You can open various configurator GUIs using the appropriate make command from the application directory.
For example, to open the Device Configurator, run:

make device-configurator

This opens the Device Configurator with the current application’s design.modus configuration file.

[C:Users/follettcj/mtw3.0/7093/hw/Hello_World/libs/TARGET CYECKIT-062-WIFI-ET/COMPOMNENT BSP_DESIGN_MODUS/design.modus - Device Configurator 4.0 - O X
File Edit View Help

|

CY¥8C6247BZ1-D54 CYW4343WKUBG CSD (CapSense, etc.) 0 (CYBSP_CSD) - Parameters g x
Peripherals ~ Pins Analog-Routing System Peripheral-Clocks ~ DMA Enter filter text... FER N =
Enter filter text... FITF BB A BLE Name Value 4
Resource Name(s) Personality Initialization Core v Peripheral Documentation

Analog (2) Configuration Help Open C5D Documentation

Communication ~ Inputs

Digital 7 Clock & | @ 8 bit Divider 3 cli (CYBSP_CSD_CLK_DIV, CYBSP_CS_CLK_DIV) [USED] ~
v System v CapSense

C5D (CapSense, etc) 0 (7) Enable CapSense

CYBSP_CSD CSD-2.0
[] LCD Direct Drive 0 led_0,
[Multi-Counter Watchdog Timer (MCWDT) 0=
[] Multi-Counter Watchdog Timer (MCWDT) 1 |
[Real Time Clack (RTC)

7 Target CPU core
Vv External Tools

Cortex M4 .

(7) CapSense Configurator | Launch CapSense Configurator

(7) CapSense Tuner Launch CapSense Tuner

~ CSDADC
(7) Enable CSDADC O
v CSDIDAC
(7) Enable CSDIDAC O
~ CapSense Capacitors
(2) Cmed & | @ P7[7) analog (CYBSP_CMOD) [SHARED] ~y
< >
< *| (5D (CapSense etc) 0 (CYBSP_CSD) - Parameters Code Preview
Notice List B x

©oerors 1 owamings | [] 1Tesk | @ 6infos

Fix Description Location ~
© There are reserved routing resources, See the Analog Route Editor for more information. CYWAMIWKUBG: Routing Resources
(i] There are reserved routing resources, See the Analog Route Editor for more information. CY8C6247BZ1-D54: Routing Resources @
Ready

As described under Tools targets, you can use the make command with appropriate arguments to open any
configurator. For example, to open the CAPSENSE™ Configurator, run:

make capsense-configurator

You can also use the Eclipse IDE provided with ModusToolbox™ software to open configurators. For example, if
you select the "Device Configurator" link in the IDE Quick Panel, the tool opens with the application’s
design.modus file. Refer to the Eclipse IDE for ModusToolbox™ user guide for more details about the Eclipse IDE.

One other way to open BSP configurators (such as CAPSENSE™ and SegLCD Configurators) is by using a link
from inside the Device Configurator. However, this does not apply to Library configurators (such as Bluetooth®
and USB Configurators).

3.3.2 Configurator CLI tools

Most of the configurators can also be run from the command line. The primary use case is to re-generate source
code based on the latest configuration settings. This would often be part of an overall build script for the entire
application. The command-line configurator cannot change configuration settings. For information about
command line options, run the configurator using the -h option.

30 of 107 002-29893 Rev. *R

2023-01-23

User Guide

https://www.infineon.com/MTBEclipseIDEUserGuide

o _.
ModusToolbox™ tools package user guide < | N f| neon

Updating the example application

3.4 Write application code

As in any embedded development application using any set of tools, you are responsible for the design and
implementation of the firmware. This includes not just low-level configuration and power mode transitions, but
all the unique functionality of your product. When writing application code, you must decide how the
application will interact with the hardware; see Application layers.

ModusToolbox™ software is designed to enable your workflow. It includes an integrated Eclipse IDE, as well as
support for Visual Studio (VS) Code, IAR Embedded Workbench, and Keil pVision (see Exporting to supported
IDEs). You can also use a text editor and command line tools. Taken together, the multiple resources available
to you in ModusToolbox™ software: BSPs, configurators, driver libraries, and middleware, help you focus on
your specific application.

3.4.1 Application layers

There are four distinct ways for an application to interact with the hardware as shown in the following diagram:

PDL PDL PDL

HAL Structures Configurator Structures Manual Structures Register Read/Write

Hardware

e HAL structures: Application code uses the HAL, which interacts with the PDL through structures created by
the HAL

e Configurator structures: Application code uses PDL through structures created by a Configurator.
e Manual structures: Application code uses PDL through structures created manually.

e Register read/write: Application code uses direct register read and writes.

Note: Asingle application may use different methods for different peripherals.

3.4.1.1 HAL

Using the HAL is more portable than the other methods. It is the preferred method for simpler functions and
those that don't have extremely strict flash size limitations. It is a high-level interface to the hardware that
allows many common functions to be done quickly and easily. This allows the same code to be used even if
there are changes to pin assignments, different devices in the same family, or even to a different family that
may have radically different underlying architectures. For more details, refer to HAL on GitHub.

The advantages include:

e Easy hardware changes. Just change the pin assignment in the BSP and the code remains the same. For
example, if LED1 changes from P0_0 to PO_1, the code remains the same as long as the code uses the name
LED1 with the HAL. The only change is to the BSP pin assignment.

User Guide 310f107 002-29893 Rev. *R
2023-01-23

https://infineon.github.io/psoc6hal/html/index.html

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Updating the example application

e Easy migration to a different device as product requirements change.

o Ability to use the same code base across multiple projects and generations, even if underlying architectures
are different.

The disadvantages include:

o The HAL may not support every feature that the hardware has. It supports the most common features but
not all of them to maintain simplicity.

o The HAL will use additional flash space. The additional flash depends on which HAL APIs are used.

3.4.1.2 PDL

The PDL is a lower-level interface to the hardware (but still simpler than direct register access) that supports all
hardware features. Usually the PDL goes hand-in-hand with Configurators, which will be described next. Since
the PDL interacts with the hardware at a lower level it is less portable between devices, especially those with
different architectures. For more details, refer to PDL on GitHub.

The advantages/disadvantages are the exact opposite of those for the HAL. The main advantage is that it
provides access to every hardware feature.

3.4.1.3 Configurators

Configurators make initial setup easier for hardware accessed using the PDL. The Configurators create
structures that the PDL requires without you needing to know the exact composition of each structure, and
they create the proper structure based on your selections. See Configurators for more information.

If you use the HAL for a peripheral, it will create the necessary structures for you, so you should NOT use a
Configurator to set them up. The HAL structure is accessible, and once you initialize a peripheral with the HAL
you can view and even modify that structure (that is, a HAL object). The underlying structures are hardware-
specific, so you may be sacrificing portability if you modify the structure manually. There are a few exceptions.
For example, it is reasonable to configure system items (such as clocks) and use them with the HAL.

3.5 Debug the application

When you've added and changed code in your application, it is likely that something will not work as expected.
At that point, you need to debug the application to determine what is wrong, or how to optimize the desired
behavior. Similar to building an application and programming the board, you can use an IDE or command line
options to debug the application.

3.5.1 Use Eclipse IDE

When using the provided Eclipse IDE, click the appropriate "Program" link in the Quick Panel for the selected
application.

Refer to the "Program and Debug" chapter in the Eclipse IDE for ModusToolbox™ user guide for details about
launch configs and various debugger settings.

3.5.2 Export to another IDE

If you prefer to use an IDE other than Eclipse, refer to your preferred IDE's documentation for debugging
instructions. As noted under the Build and program section, you export a ModusToolbox™ application to a
supported IDE following instructions in Exporting to supported IDEs. There are also some debugging set-up
instructions in that section.

User Guide 32 0f 107 002-29893 Rev. *R
2023-01-23

https://infineon.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://www.infineon.com/MTBEclipseIDEUserGuide

o~ _.
ModusToolbox™ tools package user guide ‘ In fl neon

Updating the example application

3.5.3 Use command line
When debugging via command line, use the following commands, as applicable:

o make debug - Build and program the board. Then launch the GDB server.
e make gdebug - Skip the build and program steps. Just launch the GDB server.

e make attach - Starts a GDB client and attaches the debugger to the running target.

User Guide 33 0f 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

ModusToolbox™ build system

4 ModusToolbox™ build system

This chapter covers various aspects of the ModusToolbox™ build system. Refer to CLI set-up instructions for
getting started information about using the command line tools. This chapter is organized as follows:

e Overview

e make help
o make getlibs
e BSPs

e Environment variables

e Adding source files

e Pre-builds and post-builds

e Available make targets

e Available make variables

4.1 Overview

The ModusToolbox™ build system is based on GNU make. It performs application builds and provides the logic
required to launch tools and run utilities. It consists of a light and accessible set of Makefiles deployed as part of
every application. This structure allows each application to own the build process, and it allows environment-
specific or application-specific changes to be made with relative ease. The system runs on any environment
that has the make and git utilities.

Note: User-defined command line make parameters are not supported and the only supported variables
are TOOLCHAIN and TARGET.

The ModusToolbox™ command line interface (CLI) and supported IDEs all use the same build system. Hence,
switching between them is fully supported. Program/Debug and other tools can be used in either the command
line or an IDE environment. In all cases, the build system relies on the presence of ModusToolbox™ tools
included with the ModusToolbox™ installer.

The tools contain a start.mk file that serves as a reference point for setting up the environment before
executing the recipe-specific build in the base library. The file also provides a get 1ibs make target that brings
libraries into an application. Every application must then specify a target board on which the application will
run. These are provided by the <BSP>.mk files deployed as a part of a BSP library.

The majority of the Makefiles are deployed as git repositories (called "repos"), in the same way that libraries are
deployed in the ModusToolbox™ software. There are two separate repos: core-make used by all recipes and a
recipe-make-xxx that contains BSP/target specific details. These are the minimum required to enable an
application build. Together, these Makefiles form the build system.

4.2 make help

The ModusToolbox™ build system includes amake help target that provides help documentation. In order to
use the help, you must first run the make getlibs command inan application directory (see make getlibs for
details). From the appropriate shell in an application directory, type in the following to print the available make
targets and variables to the console:

make help

User Guide 34 0f 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

ModusToolbox™ build system

To view verbose documentation for any of these targets or variables, specify them using the cy HELP variable.
For example:

make help CY HELP=TOOLCHAIN

Note: This help documentation is part of the base library, and it may also contain additional information
specific to a BSP.
4.3 make getlibs

When you run the make getlibs command, the build system finds all the .mtb files in the application
directory and performs git clone operations on them. A.mtb file contains the source location of a library
repo, a specific tag for a version of the code, and the location to store the library.

Note: The make getlibsoperation may take along time to execute as it depends on your internet
speed and the size of the libraries that it is cloning. To improve subsequent library cloning
operations, a cache directory named ".modustoolbox/cache" exists in the SHOME (Linux, macOS)
and SUSERPROFILE (Windows) directories.

The get1ibs target finds and processes all.mtb files and uses the git command to clone or pull the code as
appropriate. The target generates .mtb files for indirect dependencies. Then, it checks out the specific tag listed
in the .mtb file. The Project Creator and Library Manager invoke this process automatically.

Note: ModusToolbox™ version 3.0 no longer supports the old LIB flow, thus all .lib files are ignored.

e Thegetlibs target must be invoked separately from any other make target (for example, the command
make getlibs buildisnotallowed and the Makefiles will generate an error; however, a command such
asmake clean buildisallowed).

e Thegetlibs targetperformsagit fetch on existing libraries but will always checkout the tag pointed to
by the overseeing.mtb file.

e Thegetlibs target detects if users have modified standard code and will not overwrite their work. This
allows you to perform some action (for example commit code or revert changes, as appropriate) instead of
overwriting the changes.

The build system also has aprint1ibs target that can be used to print the status of the cloned libraries.

4.3.1 repos

The cloned libraries are located in their individual git repos in the directory pointed to by the
CY GETLIBS PATH variable (for example, /deps). These all point to the "our" remote origin. You can point your
repo by editing the .git/config file or by running the git remote command.

If the repos are modified, add the changes to your source control (git branch is recommended). When make
getlibs isrun (to either add new libraries or update libraries), it requires the repos to be clean (that s, all
changes must be committed). You may also use the .gitignore file for adding untracked files when running make
getlibs. See also KBA231252.

User Guide 350f 107 002-29893 Rev. *R
2023-01-23

https://community.infineon.com/docs/DOC-21498

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

ModusToolbox™ build system

4.4 BSPs

An application must specify a target BSP through the TARGET variable in the Makefile. We provide BSPs based
on our kits to use as a starting point. When you create an application, the selected BSP is then owned by that
application, and you can modify it as needed. For more information about BSPs, refer to the Board support

packages chapter.

e When using the Project Creator to create an application, it provides the selected BSP and updates the
Makefile.

e Usethe Library Manager to add, update, or remove a BSP from an application. You can also add a.mtb file
that contains the URL and a version tag of interest in the application.

4.5 Environment variables

ModusToolbox™ software supports custom installation paths, and we provide the following variables to specify
locations of tools and support files other than the default:

e CY TOOLS PATHS (path to theinstallation "tools_<version>" directory)
e CY GETLIBS CACHE PATH (path to the "cache" directory)

e CY GETLIBS OFFLINE PATH (path to the offline content)

® CyManifestLocOverride (path tothe local manifest.loc file)

® CyRemoteManifestOverride (URL to aspecific manifest file)

For ModusToolbox™ version 3.0, we also include a global path for assets like device-db using the variable
named CY GETLIBS GLOBAL PATH. If the variable does not exist, it assumes a default path of
~/.modustoolbox/global.

Note: When entering variables that require a path, use a Windows-style path (not Cygwin-style, like
/cygdrive/c/). Also, use forward slashes. For example, "C:/MyPath/ModusToolbox/tools_3.0".

4.6 Adding source files

Source and header files placed in the application directory hierarchy are automatically added by the auto-
discovery mechanism. Similarly, library archives and object files are automatically added to the application.
Any object file not referenced by the application is discarded by the linker. The Project Creator and Library
Manager tools run the make getlibs command and generate a mtb.mk file in the application's libs
subdirectory. This file specifies the location of shared libraries included in the build.

The application Makefile can also include specific source files (SOURCES), header file locations (INCLUDES) and
prebuilt libraries (LDLTBS). This is useful when the files are located outside of the application directory
hierarchy or when specific sources need to be included from the filtered directories.

4.6.1 Auto-discovery

The build system implements auto-discovery of library files, source files, header files, object files, and pre-built
libraries. If these files follow the specified rules, they are guaranteed to be brought into the application build
automatically. Auto-discovery searches for all supported file types in the application directory hierarchy and
performs filtering based on a directory naming convention and specified directories, as well as files to ignore. If
files external to the application directory hierarchy need to be added, they can be specified using the SOURCES,
INCLUDES, and LIBS make variables.

User Guide 36 0f 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

ModusToolbox™ build system

To control which files are included/excluded, the build system implements a filtering mechanism based on
directory names and .cyignore files.

4.6.1.1 .cyignore

Prior to applying auto-discovery and filtering, the build system will first search for .cyignore files and construct
a set of directories and files to exclude. It contains a set of directories and files to exclude, relative to the
location of the .cyignore file. The .cyignore file can contain make variables. For example, you can use the
SEARCH_variable to exclude code from other libraries as shown for the "Test" directory in a library called
<library-name>:

$ (SEARCH <library-name>)/Test

The cY IGNORE variable can also be used in the Makefile to define directories and files to exclude.

Note: The cy IGNORE variable should contain paths that are relative to the application root.
Forexample, ./srcl.

4.6.1.2 TOOLCHAIN_<NAME>

Any directory that has the prefix "TOOLCHAIN_" is interpreted as a directory that is toolchain specific. The
"NAME" corresponds to the value stored in the TOOLCHAIN make variable. For example, an IAR-specific set of
files is located under a directory named TOOLCHAIN_IAR. Auto-discovery only includes the TOOLCHAIN_<NAME>
directories for the specified TOOLCHAIN. All others are ignored. ModusToolbox™ supports IAR, ARM, and
GCC_ARM.

4.6.1.3 TARGET_<NAME>

Any directory that has the prefix "TARGET_" is interpreted as a directory that is target specific. The "NAME"
corresponds to the value stored in the TARGET make variable. For example, a build with TARGET=CY8CPROTO-
062-4343wignores all TARGET_ directories except TARGET_CY8CPROTO-062-4343W.

Note: The TARGET_ directory is often associated with the BSP, but it can be used in a generic sense. E.g.
if application sources need to be included only for a certain TARGET, this mechanism can be used
to achieve that.

Note: The output directory structure includes the TARGET name in the path, so you can build for target A
and B and both artifact files will exist on disk.

4.6.1.4 CONFIG_<NAME>

Any directory that has the prefix "CONFIG_" is interpreted as a directory that is configuration (Debug/Release)
specific. The "NAME" corresponds to the value stored in the CONFIG make variable. For example, a build with
CONFIG=CustomBuild ignores all CONFIG_ directories, except CONFIG_CustomBuild.

Note: The output directory structure includes the CONFIG name in the path, so you can build for config A
and B and both artifact files will exist on disk.

User Guide 37 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

ModusToolbox™ build system

4.6.1.5 COMPONENT_<NAME>

Any directory that has the prefix "COMPONENT_" is interpreted as a directory that is component specific. This is
used to enable/disable optional code. The "NAME" corresponds to the value stored in the COMPONENT make
variable. For example, consider an application that sets COMPONENTS+=comp1. Also assume that there are two
directories containing component-specific sources:

COMPONENT compl/src.c
COMPONENT comp2/src.c

Auto-discovery will only include COMPONENT_compl/src.c and ignore COMPONENT_comp2/src.c. If a specific
component needs to be removed, either delete it from the COMPONENTS variable or add it to the
DISABLE COMPONENTS variable.

4.6.1.6 BSP makefile

Auto-discovery will also search for a bsp.mk file (aka, BSP makefile). If no matching BSP makefile is found, it will
fail to build.

4.7 Pre-builds and post-builds

A pre-build or post-build operation is typically a script file invoked by the build system. Such operations are
possible at several stages in the build process. They can be specified at the application, BSP, and recipe levels.

You can pre-build and post-build arguments in the application Makefile. For example:
project prebuild:
commandl -argl
Command2 -arg?2
The sequence of execution in a build is as follows:
1. Recipe pre-build - Defined using recipe prebuild target.
2. BSP pre-build - Defined usingbsp prebuild target.
3. Project pre-build - Defined using project prebuild target.
4. Source compilation and linking.
5. Recipe post-build - Defined using recipe postbuild target.

6. BSP post-build - Defined using bsp postbuild target.

7. Project post-build - Defined using project postbuild target.

User Guide 38 0of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

ModusToolbox™ build system

4.8 Available make targets

A make target specifies the type of function or activity that the make invocation executes. The build system
does not support a make command with multiple targets. Therefore, a target must be called in a separate make
invocation. The following tables list and describe the available make targets for all recipes.

4.8.1 General make targets
Target Description
all Same as build. That is, builds the application.

This target is equivalent to the "build" target.

getlibs Clones the repositories and checks out the identified commit.

When using .mtb files, the repos are cloned to the shared location

$(CY GETLIBS SHARED PATH)/$(CY GETLIBS SHARED NAME).By default, this directory
is specified by the project Makefile.

build Builds the application.

The build process involves source auto-discovery, code-generation, pre-builds, and post-builds. For
faster incremental builds, use the gbui 1d target to skip the auto-discovery step.

For multi-core applications, running this target builds all core projects in the application, and
generates a combined hex file.

build proj Build a single project.
Build a single target in the application. In single core-applications, this target is the same as the
"build" target.

gbuild Quick builds the application using the previous build's source list.

When no other sources need to be auto-discovered, this target can be used to skip the auto-
discovery step for a faster incremental build.

gbuild proj Builds a single project using the previous build's source list. In the single project-applications, this
target is the same as the "gbuild" target.

When no other sources need to be auto-discovered, this target can be used to skip the auto-
discovery step for a faster incremental build.

program Builds the application and programs it to the target device. In multi-core applications, this will
program the combined hex file.

The build process performs the same operations as the bui1d target. Upon completion, the
artifact is programmed to the board.

program_proj Build and program only the current project to the target device. In single-core applications, this
target is the same as the program target.

The build process performs the same operations as the bui 1d target. Upon completion, the
artifact is programmed to the board.

gprogram Quick programs a built application to the target device without rebuilding.
This target allows programming an existing artifact to the board without a build step.

gprogram_proj | Programs a built project to the target device without rebuilding. In single-core applications, this
target is the same as the gprogram target.

This target allows programming an existing artifact to the board without a build step..

debug Builds and programs. Then launches a GDB server.
Once the GDB server is launched, another shell should be opened to launch a GDB client.

gdebug Skips the build and program step and does Quick Debug; that is, it launches a GDB server.
Once the GDB server is launched, another shell should be opened to launch a GDB client.

attach Used to attach to a target for debugging.
Run in a separate shell before starting the debug target.

User Guide 39 0f 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

ModusToolbox™ build system

Target Description

clean Cleans the /build/<TARGET> directory.
The directory and all its contents are deleted from disk.

help Prints the help documentation.
UsetheCY HELP=<name of target or variable> to see theverbose documentation for
a given target or a variable.

prebuild Generates code for the application.
Runs configurators and custom prebuild commands to generate source code.

4.8.2 IDE make targets
Target Description
eclipse Generates Eclipse IDE launch configs and project files.

This target generates a .cproject and a .project if they do not exist in the application root directory.

vscode Generates VS Code IDE files.

This target generates VS Code files for debug/program launches, IntelliSense, and custom tasks. These
overwrite the existing files in the application directory except for settings.json.

ewarms This target generates an IAR Embedded Workbench v8.x compatible .ipcf file that can be imported into
IAR-EW. The .ipcf file is overwritten every time this target is run.

Note: Project generation requires Python 3 to be installed and present in the PATH variable.

uvisionb Generates Keil pVision v5 IDE .cpdsc, .gpdsc, and .cprj files.

This target generates a CMSIS-compatible .cpdsc and .gpdsc files that can be imported into Keil
UVision 5. Both files are overwritten every time this target is run. Files in the default cmsis output
directory will be automatically excluded when calling make uvision5.

Note: Project generation requires Python 3 to be installed and present in the PATH variable.
4.8.3 Tools targets
Note: There are various targets to launch tools and configurators that are not part of the make system,

but they can be used in the application directory.The following table lists a few of the common
targets as a convenience. Refer to the applicable user guide for details for the given configurator

or tool.
Target Description
library-manager Launches the Library Manager for the application to add/remove libraries and to
upgrade/downgrade existing libraries.
bsp-assistant Launches the BSP Assistant with the active BSP for the application.
device-configurator Launches the Device Configurator on the target *.modus file.

User Guide 40 of 107 002-29893 Rev. *R
2023-01-23

ModusToolbox™ tools package user guide

infineon

ModusToolbox™ build system

4.8.4 Utility make targets

Target Description

progtool Performs specified operations on the programmer/firmware-loader. Only available for devices that
use KitProg3.
This target expects user-interaction on the shell while running it. When prompted, you must specify
the command(s) to run for the tool.

printlibs Prints the status of the library repos.
This target parses through the library repos and prints the SHA1 commit. It also shows whether the
repo is clean (no changes) or dirty (modified or new files).

check Checks for the necessary tools.
Not all tools are necessary for every build recipe. This target allows you to get an idea of which
tools are missing if a build fails in an unexpected way.

4.9 Available make variables

The following variables customize various make targets. They can be defined in the application Makefile or
passed through the make invocation. The following sections group the variables for how they can be used.

4.9.1

Basic configuration make variables

These variables define basic aspects of building an application. For example:

make build TOOLCHAIN=GCC_ ARM CONFIG=CustomConfig -38

Variable

Description

TARGET

Specifies the target board/kit (that is, BSP). For example, CYSCPROTO-062-4343W.
Example usage: make build TARGET=CY8CPROTO-062-4343W

CORE

Specifies the name of the Arm core for which a project is building (e.g. CM4).
Example Usage: make build CORE=CM4
Use this variable to select compiler and linker options to build a project for a specified Arm core.

CORE_NAME

Specifies the name of the on-chip core for which a project is building (e.g. CM7_0).

Example Usage: make build CORE_NAME=CM7 0

Use this variable to select compiler and linker options to build a project for a specified on-chip
core.

Note: This variable is applicable for some multi-core devices only (e.g. XMC7xxx).

APPNAME

Specifies the name of the application. For example, "AppV1" > AppVL1.elf.
Example usage: make build APPNAME="AppV1l"
This variable is used to set the name of the application artifact (programmable image).

Note: This variable may also be used when generating launch configs when invoking the
eclipsetarget.

TOOLCHAIN

Specifies the toolchain used to build the application. For example, GCC_ARM.
Example Usage: make build TOOLCHAIN=IAR
Supported toolchains for this include GCC_ARM, IAR, and ARM.

User Guide

41 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

ModusToolbox™ build system

Variable Description

CONFIG Specifies the configuration option for the build [Debug Release].
Example Usage: make build CONFIG=Release

The CONFIG variable is not limited to Debug/Release. It can be other values. However in those
instances, the build system will not configure the optimization flags. Debug=lowest optimization,
Release=highest optimization.

The optimization flags are toolchain specific. If you go with your custom config, then you can
manually set the optimization flag in the CFLAGS.

VERBOSE Specifies whether the build is silent [false] or verbose [true].

Example Usage: make build VERBOSE=true

Setting VERBOSE to true may help in debugging build errors/warnings. By default, it is set to
false.

4.9.2 Advanced configuration make variables

These variables define advanced aspects of building an application.

Variable Description

SOURCES Specifies C/C++ and assembly files outside of application directory.
Example Usage (within Makefile): SOURCES+=path/to/file/Sourcel.c

This can be used to include files external to the application directory. The path can be
both absolute or relative to the application directory.

INCLUDES Specifies include paths outside of the application directory.
Example Usage (within Makefile): INCLUDES+=path/to/headers

Note: These MUST NOT have - I prepended. The path can be either absolute or relative
to the application directory.

DEFINES Specifies additional defines passed to the compiler.
Example Usage (within Makefile): DEFINES+=EXAMPLE DEFINE=0x01

Note: These MUST NOT have —D prepended.

VFP_SELECT Selects hard/soft ABI or full software for floating-point operations [softfp hardfp
softfloat].

If not defined, this value defaults to softfp.
Example Usage (within Makefile): VEP SELECT=hardfp

VFP_SELECT_PRECISION | Selects single-precision or double-precision operating mode for floating-point
operations.

If not defined, this value defaults to double-precision. Enable single-precision mode by
using the "singlefp" option.

Example Usage (within Makefile): VFP_SELECT PRECISION=singlefp

CFLAGS Prepends additional C compiler flags.

Example Usage (within Makefile): CFLAGS+= -Werror -Wall -02
CXXFLAGS Prepends additional C++ compiler flags.

Example Usage (within Makefile): CXXFLAGS+= -finline-functions
ASFLAGS Prepends additional assembler flags.

Usage is similar to CFLAGS.
LDFLAGS Prepends additional linker flags.

Example Usage (within Makefile): LDFLAGS+= -nodefaultlibs

User Guide 42 of 107 002-29893 Rev. *R
2023-01-23

o _.
ModusToolbox™ tools package user guide | N f| neon

ModusToolbox™ build system

Variable Description

LINKER_SCRIPT Specifies a custom linker script location.

Example Usage (within Makefile):
LINKER_SCRIPT=path/to/file/Custom Linkerl.ld

This linker script overrides the default.

Note: Additional linker scripts can be added for GCC via the LDFLAGS variable asa - L
option.

COMPONENTS Adds component-specific files to the build.

Example Usage (within Makefile): COMPONENTS+=CUSTOM CONFIGURATION

Create a directory named COMPONENT_<VALUE> and place your files. Then include the
following make variable to have that feature library be included in the build. For
example, create a directory named COMPONENT_ACCELEROMETER into auto-discovery.
Then add the following make variable to the Makefile: COMPONENT=ACCELEROMETER.
If the make variable does not include the <VALUE>, then that library will not be
included in the build.

DISABLE_COMPONENTS Removes component-specific files from the build.
Example Usage (within Makefile): DISABLE COMPONENTS=BSP_DESIGN MODUS

Include a <VALUE> to this make variable to have that feature library be excluded in the
build. For example, to exclude the contents of the COMPONENT_BSP_DESIGN_MODUS
directory, set DISABLE COMPONENTS=BSP_DESIGN MODUS.

SEARCH List of paths to include in auto-discovery. For example, ../mtb_shared/lib1.

Example Usage (within Makefile):
SEARCH+=directory containing source files

The SEARCH variable can also be used by the application to include other directories to
auto-discovery.

MERGE List of projects in the application to generate a combined hex file from.

By default, building a multi-project application will generate a combined hex file from its
sub-projects. This variable can be set from the application Makefile to override the set of
projects to generate combined hex file from.

4.9.3 Getlibs make variables

These variables are used with the make getlibs target.

Note: When entering variables that require a path, use a Windows-style path (not Cygwin-style, like
/cygdrive/c/). Also, use forward slashes. For example, "C:/MyPath/ModusToolbox/tools_3.0."

Variable Description
CY_GETLIBS_NO_CACHE Disables the cache when running get1ibs.
Example Usage:make getlibs CY GETLIBS NO CACHE=true

To improve the library creation time, the get1ibs target uses a cache
located in the user's home directory (SHOME for macOS/Linux and
SUSERPROFILE for Windows). Disabling the cache will result in slower
application creation time but may be necessary for bringing in non-
Infineon libraries.

User Guide 43 of 107 002-29893 Rev. *R
2023-01-23

o _.
ModusToolbox™ tools package user guide | N f| neon

ModusToolbox™ build system

Variable Description
CY GETLIBS OFFLINE Use the offline location as the library source.
Example Usage:make getlibs CY GETLIBS OFFLINE=true

Setting this variable signals to the build system to use the offline location
(Default: <HOME>/.modustoolbox/offline) when running the get1ibs
target. The location of the offline content can be changed by defining the
CY GETLIBS OFFLINE PATH variable.

CY_ GETLIBS PATH Path to the intended location of libs info directory.
The directory contains local libraries and metadata files about shared
libraries.

CY_GETLIBS_DEPS_PATH Path to where the library-manager stores .mtb files.

Setting this path allows relocating the directory that the library-manager
uses to store the .mtb files in your application. The default locationisin a
directory named deps.

CY_GETLIBS_CACHE_PATH Absolute path to the cache directory.

The build system caches all cloned repos in a directory named cache
(Default: <HOME>/.modustoolbox/cache). Setting this variable allows the
cache to be relocated to elsewhere on disk. Usage is similar to

CY GETLIBS PATH.

To disable the cache entirely, setthe CY GETLIBS NO CACHE variable
to [true].

CY_GETLIBS_OFFLINE_PATH Absolute path to the offline content directory.

The offline content is used to create/update applications when not
connected to the internet (Default: <HOME>/.modustoolbox/offline).
Setting this variable allows to relocate the offline content to elsewhere on
disk. Usageis similarto CY GETLIBS PATH.

CY_GETLIBS_SHARED_ PATH Relative path to the shared repo location.

All .mtb files have the format, <URI><COMMIT><LOCATION>. If the
<LOCATION> field begins with $SASSET REPO$S, then the repois
deposited in the path specified by the CY GETLIBS SHARED PATH
variable. The default is set from the project Makefile.

CY_GETLIBS_SHARED NAME Directory name of the shared repo location.

All .mtb files have the format, <URI><COMMIT><LOCATION>. If the
<LOCATION> field begins with $SASSET REPO$S, then the repo is
deposited in the directory specified by the CY GETLIBS SHARED NAME
variable. By default, this is set from the project Makefile

4.9.4 Path make variables

These variables are used to specify various paths.

Note: When entering variables that require a path, use a Windows-style path (not Cygwin-style, like
/cygdrive/c/). Also, use forward slashes. For example, "C:/MyPath/ModusToolbox/tools_3.0."

User Guide 44 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

ModusToolbox™ build system

Variable Description

CY_APP_PATH Relative path to the top-level of application. For example, ./

Settings this path to other than ./ allows the auto-discovery mechanism to search
from a root directory location that is higher than the application directory. For
example,CY APP PATH=../../ allows auto-discovery of files from a location
that is two directories above the location of the Makefile.

CY COMPILER PATH Deprecated.

UseCY COMPILER GCC ARM DIR,CY COMPILER ARM DIR,Or
CY COMPILER IAR DIRinstead.

CY_COMPILER_GCC_ARM DIR | Absolute path to the gcc-arm toolchain directory.

Setting this path overrides the default GCC_ARM toolchain directory. It is used when
the compiler is located at a non-default directory. Make uses this variable for the
path to the assember, compiler, linker, objcopy, and other toolchain binaries.

Forexmﬂpw,CY_COMPILER_GCC_ARM_DIR=C:/Program Files (x86)GNU
Arm Embedded Toolchain/10 2021.10

Note: When set in the Makefile, no quotes are required.

CY_COMPILER_IAR_DIR Absolute path to the IAR toolchain directory.

Setting this path overrides the default IAR toolchain directory. It is used when the
compiler is located at a non-default directory. Make uses this variable for the path to
the assember, compiler, linker, objcopy, and other toolchain binaries.

For example, CY COMPILER TAR DIR=C: /Program Files/IAR
Systems/Embedded Workbench 9.1/arm

Note: When set in the Makefile, no quotes are required.

CY_COMPILER_ARM DIR Absolute path to the ARM toolchain directory.

Setting this path overrides the default ARM toolchain directory. It is used when the
compiler is located at a non-default directory. Make uses this variable for the path to
the assember, compiler, linker, objcopy, and other toolchain binaries.

Forexample, CY COMPILER ARM DIR=C:/Program
Files/ARMCompiler6.16

Note: When set in the Makefile, no quotes are required.

CY_TOOLS_DIR Absolute path to the tools root directory.

Example Usage: make build
CY TOOLS DIR="path/to/ModusToolbox/tools x.y"

Applications must specify the tools_<version> directory location, which contains the
root Makefile and the necessary tools and scripts to build an application. Application
Makefiles are configured to automatically search in the standard locations for
various platforms. If the tools are not located in the standard location, you may
explicitly set this.

CY_BUILD LOCATION Absolute path to the build output directory (default: pwd/build).

The build output directory is structured as /TARGET/CONFIG/. Setting this variable
allows the build artifacts to be located in the directory pointed to by this variable.
CY_PYTHON_PATH Specifies the path to a specific Python executable.

Example Usage:
CY PYTHON PATH="path/to/python/executable/python.exe"

For make targets that depend on Python, the build system looks for Python 3 in the
user's PATH and uses that to invoke python.

If however CY PYTHON PATH is defined, it will use that python executable.

User Guide 45 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

ModusToolbox™ build system
4.9.5 Miscellaneous make variables

These are miscellaneous variables used for various make targets.

Note: When entering variables that require a path, use a Windows-style path (not Cygwin-style, like
/cygdrive/c/). Also, use forward slashes. For example, "C:/MyPath/ModusToolbox/tools_3.0."

Variable Description
CY_IGNORE Adds to the directory and file ignore list. For example, ./file1.c ./inc1
Example Usage:make build CY IGNORE="path/to/file/ignore file"

Directories and files listed in this variable are ignored in auto-discovery. This
mechanism works in combination with any existing .cyignore files in the application.

CY SIMULATOR GEN_AUTO If set to 1, automatically generate a simulator archive (if supported by the target
device).

When enabled, the bui 1d make target will generate a debugging tgz archive for the
Infineon online simulator as part of the postbuild process.

User Guide 46 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Board support packages
5 Board support packages

5.1 Overview

A BSP provides a standard interface to a board's features and capabilities. The APl is consistent across our kits.
Other software (such as middleware or an application) can use the BSP to configure and control the hardware.
BSPs do the following:

initialize device resources, such as clocks and power supplies to set up the device to run firmware.
e contain default linker scripts and startup code that you can customize for your board.

e contain the hardware configuration (structures and macros) for both device peripherals and board
peripherals.

e provide abstraction to the board by providing common aliases or names to refer to the board peripherals,
such as buttons and LEDs.

o include the libraries for the default capabilities on the board. For example, the BSP for a kit with
CAPSENSE™ capabilities includes the CAPSENSE™ library.

5.2 What’s in a BSP

This section presents an overview of the key resources that are part of a BSP. Applications can share libraries.
BSPs are owned by an application. For more details about library management, refer to the Library Manager

user guide.

The following shows a typical PSoC™ 6 BSP located in the bsp subdirectory.

w =% Hello_World
~ = bsps
w = TARGET_APP_CYBCKIT-06252-43012
 [= bluetooth
g cybsp_bt_config.c
cybsp_bt_config.h
= COMPONENT_CMOP
= COMPONENT_CM4
w = config
= GeneratedSource
Q design.cycapsense
Q design.cygspi
Q design.modus
= deps
= docs
cybsp_doc.h
cybsp_types.h
e cybsp.c
cybsp.h
system_psoch.h
bsp.mk
= EULA
=| LICENSE
Jgl props.json
[%] README.md
|%] RELEASE.md
7= build
= deps
[= images
= libs
|| main.c
=| LICENSE
Makefile
[%] README.md
=% mtb_shared

User Guide 47 of 107 002-29893 Rev. *R
2023-01-23

https://www.infineon.com/ModusToolboxLibraryManager
https://www.infineon.com/ModusToolboxLibraryManager

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Board support packages

The following sections describe the various files and directories in a typical BSP:

Note: Starting with ModusToolbox 3.0, the COMPONENT_CUSTOM_DESIGN_MODUS mechanism will no
longer be supported. Thus, the COMPONENT_DESIGN_MODUS folder can be removed from the BSP
and contents of the folder can be moved to the bsp root directory.

5.2.1 TARGET

This is the top-level directory for a BSP. All BSPs begin with "TARGET" and this is referenced in the application
Makefile for the active BSP.

5.2.2 config

This directory contains the configuration files (such as design.modus) for use with various BSP configurator
tools, including Device Configurator, QSPI Configurator, and CAPSENSE™ Configurator. At the start of a build,
the build system invokes these tools to generate the source files in the GeneratedSource directory.

5.2.3 COMPONENT

Some applications may have "COMPONENT" subdirectories. These directories are conditional, based on what
the BSP is being built for. For example, the PSoC™ 6 BSPs include COMPONENT directories to restrict which files
are used when building for the Arm Cortex M4 or MO+ core.

5.2.4 deps subdirectory

The deps subdirectory inside the BSP contains .mtbx files for various library dependencies for the BSP.

5.2.5 docs subdirectory

The docs subdirectory contains the documentation in HTML format for the selected BSP.

5.2.6 Support files

Different BSPs will contain various files, such as the APl interface to the board's resources. For example, a
typical PSoC™ 6 BSP contains the following:

e cybsp.c/.h-You need to include only cybsp.h in your application to use all the features of a BSP.
Callcybsp_init () from cybsp.c to initialize the board.

e cybsp_types.h - This currently contains Doxygen comments. It is intended to contain the aliases (macro
definitions) for all the board resources, as needed.

e system_psoc6.h - This file provides information about the chip initialization that is done pre- main().

5.2.7 bsp.mk

This file defines the DEVICE and other BSP-specific make variables such as COMPONENTS. These are described
in the ModusToolbox™ build system chapter. It also defines board-specific information such as the device ID,
compiler and linker flags, pre-builds/post-builds, and components used with this board implementation.

5.2.8 README/RELEASE.md
These are documentation files. The README.md file describes the BSP overall, while the RELEASE.md file covers

changes made to version of the BSP.

User Guide 48 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Board support packages

5.2.9 BTSDK-specific BSP files

BTSDK BSPs may optionally provide the following types of files:
o wiced_platform.h - Platform specific structures to define hardware information such as max number of
GPIOs, LEDs or.user buttons available

e Makefile - Provided to support LIB flow applications (BTSDK 2.7 and earlier). Not used in MTB flow BTSDK
2.8 or later applications.

e *hex - binary application image files that are used as part of the embedded application creation, program,
and/or OTA (Over-The-Air) upgrade processes.

o platform*.c/h - Platform specific source and header files used by platform and application initialization
functions.

e <BSP_NAME>*.cgs - Patch configuration records in text format, can be multiple copies supporting various
board configurations.

e <BSP_NAME>*.btp - Configuration options related to building and programming the application image, can
be multiple copies supporting various board configurations.

5.3 Creating your own BSP

For ModusToolbox™ version 3.0, there is a new tool called the BSP Assistant to create and modify BSPs. Refer to
the BSP Assistant user guide for details about using that tool.

For a better understanding of the contents and structure of a BSP and more detailed information about how to
create a custom BSP, as well as update the Wi-Fi and Bluetooth® connectivity device and firmware in a BSP,
refer to Application Note AN235297.

User Guide 49 of 107 002-29893 Rev. *R
2023-01-23

http://www.infineon.com/ModusToolboxBSPAssistant

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Manifest files
6 Manifest files
6.1 Overview

Manifests are XML files that tell the Project Creator and Library Manager how to discover the list of available
boards, example projects, libraries and library dependencies. There are several manifest files.

o The "super-manifest" file contains a list of URLs that software uses to find the board, code example, and
middleware manifest files.

e The "app-manifest" file contains a list of all code examples that should be made available to the user.

o The "board-manifest" file contains a list of the boards that should be presented to the userin the new
project creation tool as well as the list of BSP packages that are presented in the Library Manager tool.
There is also a separate BSP dependencies manifest that lists the dependent libraries associated with each
BSP.

e The "middleware-manifest" file contains a list of the available middleware (libraries). Each middleware
item can have one or more versions of that middleware available. There is also a separate middleware
dependencies manifest that lists the dependent libraries associated with each middleware library.

There are two versions of manifest files: ones for earlier versions of ModusToolbox™ software (2.1 and earlier),
and one for newer versions of ModusToolbox™ (2.2 and later, aka "fv2"). The older super-manifest file for use
with earlier versions contains only references manifests that contain items that support the older
ModusToolbox™ flow. The newer super-manifest file for use with the ModusToolbox™ 2.2 release and later
contains references to all the manifest files.

ModusToolbox™ 2.1 ModusToolbox™ 2.2

Tools

and earlier and later

Super manifest

Super Manifests mtb-super-manifest.xml

Super manifest FV 2.0
mtb-super-manifest-fu2 xml

Application manifests for FV 1.0
— mtb-ce-manifestxml [-—f
mtb-bt-app-manifest.xm|

Data Manifests Manifest data that can be seen by

all versions of the tools

Manifest data that can only be
seen by tools that support flow
wersion 2.0.

Application manifests for FV 2,0
mth-ce-manifest-fu2.m| —f
mtb-bt-app-manifest-fv2.xml

Board manifests for FV 1.0
— mth-bsp-manifest.xml e—
mtb-bt-bsp-manifest.xml

'
N

Board manifests for FV 2.0
mtb-bsp-manifest-fu2.ml ~—
mth-bt-bsp-manifest-fu2.xml

Middleware manifests for FV 1.0
mtb-mw-manifest.xml
mtb-bt-mw-manifest.xml
mtb-wifi-mw-manifest.xml

Middleware manifests for FV 2.0
mth-mw-manifest-fu2ml
mtb-bt-mw-manifest-fu2 xml
mtb-wifi-mw-manifest-fu2 xml

Dependencies manifests
mth-mw-dependencies-manifest-fu2.xml
mtb-bt-mw-dependencies-manifest-fu2.xml
mtb-wifi-mw-dependencies-manifest-fv2.xml
mtb-bsp-dependenices-manifest-fu2 xml
mtb-bt-bsp-dependencies-manifest-fv2.xml

User Guide 50 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Manifest files

6.2 Create your own manifest

By default, the ModusToolbox™ tools look for our manifest files maintained on our server. So, the initial lists of
BSPs, code examples, and middleware available to use are limited to our manifest files. You can create your
own manifest files on your servers or locally on your machine, and you can override where ModusToolbox™
tools look for manifest files.

To use your own examples, BSPs, and middleware, you need to create manifest files for your content and a
super-manifest that points to your manifest files. To see examples of the syntax of super-manifest and manifest
files, you can look at files provided on GitHub:

e Super-manifest: https://github.com/Infineon/mtb-super-manifest

e Code example manifest: https://github.com/Infineon/mtb-ce-manifest

e BSP manifest (including dependencies): https://github.com/Infineon/mtb-bsp-manifest

e Middleware manifest (including dependencies): https://github.com/Infineon/mtb-mw-manifest

Make sure you look at the "fv2" manifest files if you are using the flow for ModusToolbox™ version 2.2 and later.

Note: You can point to local super-manifest and manifest files by using file:/// with the path instead of
https://. For example:
file:///C:/MyManifests/my-super-manifest.xml

The manifest system is flexible, and there are multiple paths you can follow to customize the manifests.
e You can create supplementary super-manifest files that identify additional content. The tools will merge
your additional content with the default super-manifest.

e You can replace the default super-manifest file used by the tools.

6.2.1 Supplementing super-manifest using manifest.loc

In addition to the standard super-manifest file, you can specify "custom" super-manifest files. This allows you
to add additional items (BSPs, code examples, libraries) along with the standard items. You can do this by
creating a manifest.loc file in a hidden subdirectory in your home directory named ".modustoolbox":

<user_home>/.modustoolbox/manifest.loc

For example, a manifest.loc file may have:

This points to the IOT Expert template set
https://github.com/iotexpert/mtb2-iotexpert-manifests/raw/master/iotexpert-super-
manifest.xml

If this file exists, then each line in the file is treated as the URL to another super-manifest file, which is exactly
like the standard super-manifest file. The data from these manifests is combined with data from the standard
super-manifest. See the Conflicting data section for dealing with conflicts.

6.2.2 Replacing standard super-manifest using variable

The location of the standard super-manifest file is hard coded into all of the tools. However, you may override
this location by setting the CyRemoteManifestOverride environment variable. When this variable is set, the
tools use the value of this variable as the location of the super-manifest file and the hard-coded location is
ignored. This removes all Infineon content from the tools, by default. For example:

CyRemoteManifestOverride=https://myURL.com/mylocation/super-manifest.xml

User Guide 51 0f 107 002-29893 Rev. *R
2023-01-23

https://github.com/Infineon/mtb-super-manifest
https://github.com/Infineon/mtb-ce-manifest
https://github.com/Infineon/mtb-bsp-manifest
https://github.com/Infineon/mtb-mw-manifest

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Manifest files

6.2.3 Processing
The process for using the manifest files is the same for all tools that use the data:

o Thefirst level is to access the super-manifest file(s) to obtain a list of manifest files.
o Thesecond level is to retrieve the manifest data from any packs that were installed.

e Thethird level is to retrieve the manifest data from manifest.loc file, if it exists.

All the manifest data is merged into a single global data model in the tool. See the Conflicting data section for
dealing with conflicts. There is no per-file scoping. All data is merged before it is presented. The combination of
a super manifest file and the merging of all of the data allows various contributors, including third-party
contributors, to make new data available without requiring coordinated releases between the various
contributors.

super-manifest j Level 1—»
pack manifest QLGVGI 2>
manifest.loc BLevel 3>

6.2.4 Conflicting data

Ultimately, data from all of the super-manifest and manifest files are combined into a single data collection of
BSPs, code examples, and middleware. During the collation of this data, there may be conflicting data entries.
There are two types of conflicts.

The first kind is a conflict between data that comes from the level 1 primary super-manifest (and linked
manifests), data that comes from the level 2 pack manifest, if present, and data that comes from the level 3
manifest.loc file, if present. In this case, the data in the level 2 pack manifest overrides the data from the level 1
standard super-manifest, and the data in the level 3 manifest.loc file overrides the data in the level 2 pack
manifest. This mechanism allows you to intentionally override data that is in the standard location. In this case,
no error or warning is issued. It is a valid use case.

The second kind of conflict is between data coming from the same source (that is, both from primary or both
from secondary). In this case, an error message is printed and all pieces of conflicting data are removed from
the data model. This is done because in this case, it is not clear which data item is the correct one.

User Guide 52 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Manifest files

6.3 Using offline content

In normal mode, ModusToolbox™ tools look for manifest files maintained on GitHub and they download the
firmware libraries from git repositories referenced by the manifests. If a network connection to online resources
is not available, you can download a copy of all manifests and content, and then point the tools to use this copy
in offline mode. This section describes how to download, install, and use the offline content.

Note: ModusToolbox™ libraries are updated frequently, and the offline content does not always have the
latest versions available. We strongly recommend using the online content whenever possible. See
https://community.cypress.com/docs/DOC-19903 for more details.

1. Download the modustoolbox-offline-content.zip file from our website:

https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolboxofflinecontentpackage

2. Ifyou do not already have a hidden directory named .modustoolbox in your home directory, create one.
Using Cygwin on Windows for example:

mkdir -p "SUSERPROFILE/.modustoolbox"

3. Extract the ZIP archive to the /.modustoolbox sub-directory in your home directory. The resulting path
should be:

~/.modustoolbox/offline

The following is a Cygwin on Windows command-line example to use for extracting the content:
unzip —-gbod "SUSERPROFILE/.modustoolbox" modustoolbox-offline-content.zip

Note: If you previously installed a copy of the offline content, you should delete the existing
~/.modustoolbox/offline directory before extracting the archive. Using Cygwin on Windows for
example:

rm —-rf "SUSERPROFILE/.modustoolbox/offline"

4. To use the Project Creator GUI or Library Manager GUI in offline mode, select Offline from the Settings
menu (refer to the appropriate user guide for details).

Note: Make sure CyRemoteMani festOverride variable is not set when you use offline mode.

5. To use the Project Creator CLI in offline mode, execute the tool with the --of f1ine argument. For
example:

project-creator-cli --board-id CY8CPROTO-062-4343W --app-id mtb-example-psoc6-
hello-world --offline

6. Touse the BSP Assistant in offline mode, execute the tool with the --of f11ine argument. For example:
bsp-assistant --offline
You can also use the CLI in offline mode:

bsp-assistant-cli --offline

7. Thetools execute themake getlibs command underthe hood to download/update the firmware
libraries. To execute themake getlibs targetin offline mode, passthe cy GETLIBS OFFLINE=true
argument:

make getlibs CY GETLIBS OFFLINE=true

User Guide 53 of 107 002-29893 Rev. *R
2023-01-23

https://community.infineon.com/docs/DOC-19903
https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolboxofflinecontentpackage

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Manifest files

To override the location of the offline content, set the cY GETLIBS OFFLINE PATH variable:

make getlibs CY GETLIBS OFFLINE=true
CY GETLIBS OFFLINE PATH="~/custom/offline/content"

Note: When entering variables that require a path, use a Windows-style path (not Cygwin-style, like
/cygdrive/c/). Also, use forward slashes. For example, "C:/MyPath/ModusToolbox/tools_3.0."

Refer to the ModusToolbox™ build system chapter for more details about make targets and variables.

8. Once network connectivity is available, you can use the Library Manager tool to update the ModusToolbox™
project previously created offline to use the latest available content. Or you can execute the make
getlibs command without the cCY GETLIBS OFFLINE argument.

6.4 Access private repositories

You can extend the custom manifest with additional content from git repositories (repos) hosted on GitHub or
any other online git server. To access private git repos, you must configure the git client so that the Project
Creator and Library Manager tools can authenticate over HTTP/HTTPS protocols without an interactive
password prompt.

Note: While you can host libraries on private repos, the custom content manifest must be accessible
without authentication (that is, it cannot be hosted on a private git repo).

To configure git credentials for non-interactive remote operations over HTTP protocols, refer to the git
documentation:

e https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage

e https://git-scm.com/docs/git-credential-store

The simplest way is to configure a git-credential-store and save the HTTP credentials is in a plain text file. Note
that this option is less secure than other git credential helpers that use OS credentials storage.

The following steps show how to configure a git client to access GitHub private repositories without a password
prompt:

1. Login to GitHub and go to Personal access tokens: https://github.com/settings/tokens

2. Click Generate new token to open the New personal access token screen.
3. Onthatscreen:

a. Typesome textin the Note field.

b. Under Select scopes, click on repo.

c. Click Generate token (scroll down to see the button).

d. Copy the generated token.

4. Open an interactive shell (for example, modus-shell\Cygwin.bat on Windows), and type the following
commands (replace the user name and token with your information):

git config --global credential."https://github.com".helper store

GITHUB USER=<your-github-username>

GITHUB TOKEN=XXXXXXXXXXXXXXXXXKXXXXXKXXXXXKXKXXXKXXK # generated at
https://github.com/settings/tokens

echo "https://$GITHUB USER:$GITHUB TOKEN@github.com" >> ~/.git-credentials

User Guide 54 of 107 002-29893 Rev. *R
2023-01-23

https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage
https://git-scm.com/docs/git-credential-store
https://github.com/settings/tokens

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Manifest files

After entering the commands, you can clone private GitHub repositories without an interactive user/password

prompt.
Note: A GitHub account password can be used instead of GITHUB_TOKEN, in case the 2FA (two-factor
authentication) is not enabled for the GitHub account. However, this option is not recommended.
User Guide 55 of 107 002-29893 Rev. *R

2023-01-23

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Using applications with third-party tools

7 Using applications with third-party tools

ModusToolbox™ software includes a variety of ways to use applications with third-party tools. This chapter
covers the following:

e Version Control and sharing applications

e |mportto Eclipse

e Exporting to supported IDEs
e Patched flashloaders for AIROC™ CYW208xx devices

e Generating files for XMC™ Simulator tool

7.1 Version Control and sharing applications

If you are working on a design with more than one person, itis common to share an application using some
type of version control system, by manually copying files, or exporting from a supported IDE. This section
covers the files to include or exclude when sharing, as well as how to share using various methods.

7.1.1 Files to include/exclude

No matter which method you choose to share an application, you should know what is critical to copy or check
in to version control, as well as what can be regenerated easily. The main files to consider when sharing an
application include anything that you have changed or added, and that will not be regenerated. These files
include source code, BSPs and configurations, Makefile, etc.

There are several directories in the application that can be recreated and therefore do not need to be copied or
checked into version control. These include the libs, mtb_shared, build, and GeneratedSource directories. The
processes that create them are:

e libs and mtb_shared: Created by running the Library Manger and clicking the Update button, or by running
make getlibs onthe command line. Either one will clone the libraries from GitHub to the appropriate
locations.

e build: Created during the build process.

e GeneratedSource: Generated by running the associated configurator such as the Device Configurator or
Bluetooth® Configurator. The build process run Configurators automatically if the GeneratedSource files are
out of date.

7.1.2 Using version control software

If you are working on a production design, you likely use version control software to manage the design and
any potential revisions. This allows all users to stay synchronized with the latest version of an application.
ModusToolbox™ assets are provided using Git, but you can use any version control method or software that you
prefer.

ModusToolbox™ code examples have a default .gitignore file that excludes directories that can be easily
recreated, as well as files containing IDE-specific information that need not be checked in. If you are using Git as
your version control software, you can often use that file as-is. However, you are free to change it to fit your
needs. For example, you may want to check in all of the libraries from libs and mtb_shared, even though they
are available on Infineon's GitHub site.

User Guide 56 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Using applications with third-party tools

If you are using version control software other than Git, you can use the .gitignore file as a guide for configuring
the software that you are using.

Once you have an application checked in to your desired version control software, sharing the application with
a new user is straight-forward. The steps include:

1. Getacopy of the checked-in data. This will vary depending on the version control software (for example
using Git,git clone <url>).

2. Runthe Library Manager and click the Update button, or open a terminal and run the command
make getlibs. Either one will get all of the libraries required by the application.

3. Work with the application as usual. The build and GeneratedSource files will be created automatically as
needed.

4. When finished with your changes, check in your updates following your version control process.

7.1.3 Manual file copy

If you are not using version control software, you can just copy a complete application directory from one user
to another. If desired, you can exclude the directories listed under Files to include/exclude since the libraries
can be recreated, and the other files are regenerated when the application is built.

7.1.4 Saving/exporting from IDE

Another method to share files is by using your preferred IDE's export or Save As method. Refer to your IDE's
documentation for details, keeping in mind certain files and folders need not be exported.

One such example is the Eclipse IDE Export as Archive. Refer to the Eclipse IDE for ModusToolbox™ user guide
for more details.

7.2 Import to Eclipse

The easiest way to create a ModusToolbox™ application for Eclipse is to use the Eclipse IDE included with the
ModusToolbox™ software. The tools package includes an Eclipse plugin that provides links to launch the
Project Creator tool and then import the application into Eclipse. For details, refer to the Eclipse IDE for
ModusToolbox™ quick start guide or user guide.

If you already have a ModusToolbox™ application created some other way, or provided by a colleague, you can
import that application for use in Eclipse as follows:

1. Openthe Eclipse IDE included with ModusToolbox™, and select Import Application In-Place on the Quick
Panel.

Q. ®=V. &'E. ®%B. = O

Eclipse IDE for
ModusToolbox™

« Start
[New Application
rﬁ Import Existing Application In-Place |
& Sear

rch Online for Libraries and BSPs

nline for Code Examples

& Training Material
&, Refresh Quick Panel

User Guide 57 of 107 002-29893 Rev. *R
2023-01-23

https://www.infineon.com/MTBEclipseIDEUserGuide
http://www.infineon.com/ModusToolboxQSG
https://www.infineon.com/MTBEclipseIDEUserGuide

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Using applications with third-party tools

Note: The Import Existing Application In-Place option does not create a new copy of the application in
your workspace; it uses the application's existing location. Therefore, you should move the
application to your Eclipse workspace on disk first before importing it.

2. Inthe Project Location field, click the Browse... button; navigate to and select the application’s directory.

[Import Eclipse IDE for ModusTaolbox™ Project O X
Project information.
Enter the directory of the ModusToolbox™ project to be imported.
Project Location: | C\Users\)¥Z\examples | EBrowse...i
'/?:' Finish Cancel
3. Click Finish.

The application displays in the Eclipse IDE Project Explorer.

7.3 Exporting to supported IDEs

7.3.1 Overview

This chapter describes how to export a ModusToolbox™ application to various supported IDEs in addition to the
provided Eclipse IDE. As described Getting started chapter, the Project Creator tool includes a Target IDE
option that generates files for the selected IDE. Also, as noted in the ModusToolbox™ build system chapter, the
make command includes various targets for the following IDEs:

e Visual Studio (VS) Code: make vscode

e |JAREmbedded Workbench: make ewarm8 TOOLCHAIN=IAR

o KeilpVision: make uvision5 TOOLCHAIN=ARM

User Guide 58 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide ‘ In fl neon

Using applications with third-party tools

7.3.2 Export to VS Code

This section describes how to export a ModusToolbox™ application to VS Code.

7.3.2.1 Prerequisites

e ModusToolbox™ 3.0 software and application
e VS Code version 1.42.x or later

e VS Code extensions. Install the following.
Note: These versions change often; use the most current.

e (C/C++tools

*

C/C++ n263 DOAM 35

C/C++ IntelliSense, debugging, and code browsing.
Microsoft 5]

e Cortex-Debug

Cortex-Debug 034 DK K5
ARM Cortex-M GDE Debugger support for VSCode
marus25 &

comTEX

e For J-Link debugging, download and install J-Link software:

https://www.segger.com/downloads/J-Link

7.3.2.2 Process example
1. Create a ModusToolbox™ application.
a. Ifyou use the Project Creator tool, choose "VS Code" from the Target IDE pull down menu.

b. If you use the command line, open an appropriate shell program (see CLI set-up instructions), and
navigate to the application directory, and run the following command:

make vscode

Either process generates json files for debug/program launches, IntelliSense, and custom tasks.

Note: Any time you update/patch the tools for your application(s), that path information might change.
So, you will need to regenerate the needed support files by running the make vscode command
or update them manually.

2. Open the VS Code tool.

a. Toopenthe application and the mtb_shared directory in the same workspace, select File > Open
Workspace...

File Edit Selection View Go Run

Ctri+N

Ctrl+5Shift+N

Ctrl+0

lder... Ctri+K Ctl+0

'Open Workspace...

Open Recent

Navigate to the application directory and select the <application_name=>.code-workspace file.

User Guide 59 of 107 002-29893 Rev. *R
2023-01-23

https://www.segger.com/downloads/jlink

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Using applications with third-party tools

If you have several applications in the workspace, you can add them using Add workspace folder...

b. To open just the application and select File > Open Folder...

File Edit Selection View Go Debug

@ New File Ctrl+N

ndow Cirl+Shift+N
Open File... Ctrl+0
Open Folder... Cirl+K Cirl+0
Open Workspace...

Open Recent

Note: On macQOS, this command is File > Open...

Navigate to and select the application directory, and then click Select Directory.

3. When your application opens in the VS Code IDE, select Terminal > Run Build Task...

Terminal Help

New Terminal Ctrl+Shift+

Split Terminal Ctrl+Shift+5

Run Task...
Run Build Task... Ctrl+Shift+B
Run Active File

Run Selected Text

4. Then, select Build or Build: Build [Debug] depending on build options available for your project. After
building, the VS Code terminal should display messages similar to the following:

.cy_sharedmem
-noinit

Total Internal Flash (Available)
Total Internal Flash (Utilized)

Total Internal SRAK
Total Internal SRAM (

Terminal will be reused by tasks, press any key to close it.

7.3.2.3 To debug using KitProg3/MiniProg4

Click the Run and Debug icon on the left and then click the Play button.

) FEle Edit Selection View Go Run Terminal Help
RUM EBUG [Launch PSoC6 CM4 (KitProg3_MiniProg4) ~

~ VARIABLES

User Guide 60 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Using applications with third-party tools

The VS Code tool runs in debug mode.

File Edit Selection View Go Run Terminal Help main.c - Hello_ World - Visual Studio Code

RUN P> Launch PSoC6 CMA (KitProg3_MiniProgd) < ¥ T 9 0O

~* VARIABLES main.c »

sult:
lobal

> Static

main()
If
d
cy_rslt_t result;

result = cybsp_init();

~ CALL STACK PAUSED ON START 4 ha du mode: Thread
main@ox10082388 mainc 97

mode: Thread

“ BREAKPOINTS
> CORTEX PERIPHERALS
» CORTEX REGISTERS > |
1° releasev200* & ®0A0 & Launch PSoC6 CMA (KitProg3_MiniProgd) (Hello_World) Ln97,Col 1 Spaces4 UTF-8 LF C MTB & 0

7.3.2.4 To debug using J-Link

You can use a J-Link debugger probe to debug the application.

1. Navigate to and open the global settings.json file. If there is no such file, then create one. The file is located
here by default:
o Windows: %APPDATA%/Code/User/settings.json
e macOS: SHOME/Library/Application Support/Code/User/settings.json
e Linux: SHOME/.config/Code/User/settings.json

2. Add the path to the J-Link GDB server. For example:

{"cortex-debug.JLinkGDBServerPath": "C:/Program Files
(x86) /SEGGER/JLink/JLinkGDBServerCL"}

e Windows: "cortex-debug.JLinkGDBServerPath": "<JLinkInstallDir>/JLinkGDBServerCL"

e macOS/Linux: "cortex-debug.JLinkGDBServerPath":
"<JLinkInstallDir>/JLinkGDBServer"

Note: The J-Link path can be configured in the local application's settings, if needed.

User Guide 61 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide ‘ In fl neon

Using applications with third-party tools

3. Click the Run and Debug icon, select Launch PSOC6 CM4 (JLink) config, and click the Play button.

File Edit Selection View Go Run Terminal Help

RUN B Launch PSoC6 CM4 (JLink) vo|@ & o

v VARIABLES

&

~ BREAKPOINTS

7.3.3 Export IAR EWARM (Windows only)

This section describes how to export a ModusToolbox™ application to IAR Embedded Workbench and debug it
with CMSIS-DAP or J-Link.

7.3.3.1 Prerequisites

e ModusToolbox™ 3.0 software and application

e Python 3.8isinstalled in the tools_3.0 directory, and the make build system has been configured to use it.
You don't need to do anything if you use the modus-shell/Cygwin.bat file to run command line tools.

However, if you plan to use your own version of Cygwin or some other type of bash, you will need to ensure
your system is configured correctly to use Python 3.8. Use the CY PYTHON PATH as appropriate.

e |AR Embedded Workbench version 8.42.2 or later
e PSoC™6 Kit (for example, CYSCPROTO0-062-4343W) with KitProg3 FW
e For J-Link debugging, download and install J-Link software:

https://www.segger.com/downloads/J-Link/J-Link Windows.exe

7.3.3.2 Process example
1. Create a ModusToolbox™ application.
a. Ifyou use the Project Creator tool, choose "IAR" from the Target IDE pull down menu.

b. If you use the command line, open an appropriate shell program (see CLI Set-up Instructions), navigate
to the application directory, and run the following command:

make ewarm8 TOOLCHAIN=IAR

Note: This sets the TOOLCHAIN to IAR in the Embedded Workbench configuration files but not in the
ModusToolbox™ application’s Makefile. Therefore, builds inside IAR Embedded Workbench will use
the IAR toolchain while builds from the ModusToolbox™ environment will continue to use the
toolchain that was previously specified in the Makefile. You can edit the Makefile’s TOOLCHAIN
variable if you also want ModusToolbox™ builds to use the IAR toolchain.

Note: Check the output log for instructions and information about various flags.

An IAR connection file appears in the application directory. For example:

mtb-example-psoc6-capsense-buttons-slider-freertos.ipcf

User Guide 62 of 107 002-29893 Rev. *R
2023-01-23

https://www.segger.com/downloads/jlink/JLink_Windows.exe

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Using applications with third-party tools
2. Start IAR Embedded Workbench.
3. Onthe main menu, select Project > Create New Project > Empty project and click OK.

4. Browse to the ModusToolbox™ application directory, enter a desired application name, and click Save.

« v <« Users » vmed » CapSenseButtonsandSliderFreeRTOS v O Search CapSenseButtonsands.. @
Organize v New folder =~ @
J 3D Objects A Name Date modified Type Size
I Desktop git File folder
%] Documents build File folder
4 Downloads images File folder
b Music libs File folder
=] Pictures
B videos
3 Windows (C3)
v
File name: | mtb-example-psoch-capsense-buttons-slider-freertos -
Save as type: | Project Files (*.ewp) v
 Hide Folders Save Cancel

5. Afterthe application is created, select File > Save Workspace. Then, enter a desired workspace name.
6. Select Project>Add Project Connection and click OK.

7. Onthe Select IAR Project Connection File dialog, select the .ipcf file and click Open:

@ Select |AR Project Connection File

« v » Volodymyr Medvid > CapSenseButtonsandSliderFreeRTOS + D Search CapSenseButtonsandS.. ©
Organize v New folder =~ [@
I This PC A Mame Date medified Type

M 3D Objects .git 13.0. File folder
[Desktop build File folder
) Documents images File folder
libs File folder
4 Downloads
settings File folder
& Music || mtb-example-psach-capsense-buttons-slider-freertos.ipcf IPCF File
=] Pictures
B videos
o Windows (C)
b Network = ®
File name: | mtb-example- psocE- capsense-buttons-slider-freertos.ipef V‘ IAR Project Connection File (“.i|

8. Onthe main menu, Select Project > Make.

Note: If you don't care about staying connected to the ModusToolbox™ tools that generate the project
files, you can delete the .ipcf file from the workspace and restart IAR. The official IAR site discusses
this option: https://github.com/IARSystems/project-migration-tools

User Guide 63 of 107 002-29893 Rev. *R
2023-01-23

https://github.com/IARSystems/project-migration-tools

o~ _.
ModusToolbox™ tools package user guide ‘ In fl neon

Using applications with third-party tools

If you don't remove the .ipcf file, you need to make all file/group additions at the workspace level.

e Test-IAR-2 - IAR Embedded Workbench IDE - Arm 9.10.2

File Edit View Project Simulator Tools Window Help

DOE@ = SB[0C

‘Workspace v o x
Debug ~
Files L]
i Options...
=L
F Make

Compile
Rebuild All

Clean
C-5TAT Static Analysis >

Stop Build

TestiA| Add » Add Files...
Add Group...

Build Remave

9. Connectthe PSoC™ 6 kit to the host PC.

7.3.3.3 XMC7000 and TRAVEO™ Il specific steps

Because the XMC7000 and TRAVEO™ Il devices have multiple cores - even if they are not used in a single-core
application - you must perform special steps to modify the linker script for the IAR project. See
XMC7000/TRAVEQO™ Il specific steps for more details.

7.3.3.4 XMC 1000/4000 devices

Exporting a project for XMC 1000/4000 devices requires specifying the path to the local IAR EWARM installation.
This can be done by setting the value of the CY_COMPILER_IAR_DIR variable. Either in the project's Makefile or
on the export command line.

Makefile:
CY COMPILER IAR DIR=C:/Program Files/IAR Systems/Embedded Workbench 9.3/arm
Command line:

Make ewarm8 TOOLCHAIN=IAR CY COMPILER IAR DIR="C:/Program Files/IAR
Systems/Embedded Workbench 9.3/arm"

User Guide 64 of 107 002-29893 Rev. *R
2023-01-23

ModusToolbox™ tools package user guide

Infineon

Using applications with third-party tools

7.3.3.5 To use KitProg3/MiniProg4

1. Asneeded, run the fw-loader tool to make sure the board firmware is upgraded to KitProg3. See the

KitProg3 User Guide for details. The tool is in the following directory by default:

<user_home>/ModusToolbox/tools_3.0/fw-loader/bin/

2. Select Project > Options > Debugger and select CMSIS-DAP in the Driver list:

Options for node "mtb-example-psoct-capsense-buttons-slider-freertos"

Categony. Factary Setiings
General Options
Static Analysis
Runtime Checking
CJC++ Compiler Setup Download Images Multicore Extra Options Plugins
Assembler
Output Converter Driver Runto
Custom Euild CMSIS DAP [main
Build Actions
Simulator
Linker 20!
Simulator GDB Server
et
CADI
J-Link/J-Trace
CMSIS DAR Tl Stellars
GDEB Server Mu-Link
Ijet PE micra
- ST-LINK
JHink/1-Trace
T 5‘:" Third-Party Driver
ars TI MSP-FET
Mu-Link TI XDS G \debugger\Cypress'\PSoCEVCYECE [
PE micro
STLINK
Third-Party Driver
TIMSP-FET
TIXDS
Cancel

3. Select the CMSIS-DAP node, switch the interface from JTAG to SWD, and set the Interface speed to 2MHZ.

Category:

General Optons
Static Analysis
Runtime Checking

Factory Settings

C/C++ Compiler
Assembler
Output Converter
Custom Buid
Build Actions
Linker
Debugger
Simulator
CADI

GDB Server
I-jet
J-Link/)-Trace
TI Stellaris
Nu-Link

PE micro

L awsisoe |

Setup Interface Breakpoints
Probe config Probe configuration fie
® Auto veride default
From fie
Explicit

Interface Explicit probe configuration
JTAG Mult-target del
® SWD

Interface speed
2MHz

ST-LINK
Third-Party Driver
TI MSP-FET
TIXDS

OK Cancel

4, Click OK.

User Guide 65 of 107 002-29893 Rev. *R

2023-01-23

https://www.infineon.com/documentation/development-kitsboards/kitprog-user-guide

ModusToolbox™ tools package user guide

Infineon

Using applications with third-party tools

5. Select Project > Download and Debug.

The IAR Embededed Workbench starts a debugging session and jumps to the main function.

=]
File Edit View Projet Debug Disassembly CMSIS-DAP Tools Window Help
N = B ocC < Q>%5+=< B> RO GcO_in3rs a - e s gy
‘Workspace ¥ 3 X | AR Information Center for Arm main.c X | Registers 1 ¥ B X Disassembly v X
Debug +| |mainQ f0 Fnd[] G CurentCPL | Goto Memary
Files e o . * [Name Value Disassermbly ~
B @ mtb-example-psoc6-capse... ¥ s (ConfigMINIMAL STACK SIZE) 000000000 01000 dede: Ozesbg 0x0ad0
|1 8 mt-example-psoc6-capsen 70 (configMINIMAL STACK SIZE) 0=E000EDEE 0x1000 " dee?: 0za8is
7 008000000 0x1000 deed: 0zf7ff OxfscH
W coredlib 72 3 used in this pr + 000600305 break:
73 #asfine SINGLE_ELEMENT_QUEUE 1w 000000000 0x1000 'deed: Oze7dl
7 000000000 break:
75 0200000000 0x1000 'deea: O0xe7d0
DG /AR KRR R A AR KRR AR KR LA E AR E4 AR KRR R A4 £ KA AR KR EAR =lid00s 75 e s
Fa 77 | * Function Name: main(} 0RFC12CC3HE 0=1000 'dcf0: 0x000d°' 0007
T8 | AR AN KA KR KRR AR AR RA AR R AR KA KA KA R AR EAAEA AR KRR AR A KA R AR EAREAREAR e LD detd. Dannng 4240
Lg s Source 3] smossry: § . 0:1000D55C 0x1000'dcf8: 0x0800 ' 59c
80 | 4 System entrance point. This function sets up user tasks and then starts = =
cvhspc = |, ic Rivs schcdator, 0x1000D55C __a=n(Blkpt. 1
cycfac wil B 000000000 CY_HALT
cycly_capsensec == 1. potar 060000000 0x1000 'dcfc: Dxbell
cyefg_clocks.c g1 | ¢ int 000000000 H
cycfy_peripherals.c es | « 01000000 0x1000 'dofe: 0:4770
cyef_pins.c 86 L At A AR AR AR AL R RA R RA ARk LA R AR KA R AR EARRAA R AR AR KRR EAREAR L int main{void)
cyclg_gspi_memslatc ® 87 int main(void) 0x080FF800 i
88l [0x1000DE?B nain
89 cy_rslt_t result; PRIHASK 000000001 0x1000dd00: 0xbS=0
90 # BASEPRI 000000000 result = oybsp_init():
B] " # BASEPRI_MAX 0x00000000 0x1000°dd02: 0xf7fe Oxfbdf
B capsense_task.c g2 result = cybsp_init{): % FAULTHASK 0x00000000 if (result != CY_RSLT_SU
|— B capsense_taskh e & CONTROL 0x00000004 01000 'dd06: 0=2800
— o | Deard in: ' CYCLECOUNTER 25183 0x1000'dd08: 0=d001
zf & i (zesul CCTINERL 25188 CY_ASSERT(D)
— B led_taskh o CCTINERZ 25188 0x1000'dd0a: Oxf74f OxEE?
— 37 ©Y_ASSERT (0)
mainc 8l) CCSTER 25188 _enable_irq():
— O mitb-exemple-psoc6-capsen = 0x1000'dde: Oxbb62
L@ o Output P led_connand_data_g - =0
101
102 0x1000'dd10: 0x2200
103 . 0x1000'dd12: 0x2108
MEE . 0x1000 'dd14: 0x2001
105 . 0x1000'dd16: 0mf747 DmffTdw
tbresampiep D b i < v(l< > >
Debug Log ~ 3 X CallStack ~ 3 x
Log % nain
ThuFeb 13,2020 13:36:36: Targetreset [_call_nain + Ozd]
ThuFeb 13, 2020 13:36:38: DMAC Trace: Configuring p\alfurm side W0 component
Thu Feh 13, 2020 13:36:36 INFO: Configuring race using 'swo . E00 _0002)' seting .
Thu Feh 13, 2020 13:36:35 INFO: SWO trace mode is nat supported by the pmbe(useueunewrame probe) -race is disat
v
< >
Build DebugLog < >
Ready Ln &7, Col 15 UTF-8_ CAP NUM OVR B

7.3.3.6

For a single-core PSoC™ 6 MCU, you must specify a special type of reset, as follows:

Category:

General Options.

Static Analysis

Runtme Checking
C/C++ Compiler
Assembler
Output Converter
Custom Buid
Buid Actions
Linker
Debugger

Simulator

CADI

GDB Server

Ijet
J-Unk/)-Trace

TI Stellaris
Nu-Unk

PE micro
ST-LINK
Third-Party Driver

Setup Interface Breakponts
Reset

Hardware

Duraton: 300 ms Delay after: 500| ms
Emulator
Aways prompt for probe
on

Serial no

Log communication

Factory Settings

User Guide

66 of 107

To use MiniProg4 with PSoC™ 6 single core and PSoC™ 6 256K

002-29893 Rev. *R

2023-01-23

ModusToolbox™ tools package user guide

Infineon

Using applications with third-party tools
7.3.3.7 To use J-Link

You can use a J-Link debugger probe to debug the application.
1.

2. Then select J-Link/J-Trace as the active driver:

Options for node "mtb-example-psoct-capsense-buttons-slider-freertos”

Eategony Factory Settings
General Options
Static Analysis
Runtime Checking
C/C++ Compiler Setup Download Images Multicore Extra Options Plugins
Assembler
Output Converter Driver 1Runto
Custom Build HinkA-Tiace - [main
Build Actions
Simulator
Linker CADI
Chsis DF
Simulator GDB Server
cap1 Lt
CMSIS DAP Ti Stellans
GDB Server Mu-Link
et PE micro
i ST-LINK
JHink/3-Tr
T :‘:" e Third-Party Driver
aris TI MSP-FET
Hu-Link TI XDS [debugger'Cypress'PSoCE\CYECE | o
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TIXDS
Cancel

Open the Options dialog and select the Debugger item under Category.

3. Select the J-Link/J-Trace item under Category, and under the Connection tab, switch the interface to

SWD:

Options for node "mtb-example- psoc6-capsense- buttons-slider-freertos"

Categaory:

Factory Settings

General Options

Static Analysis
Runtime Chedding
C/C-++ Compiler Setup Connection Breakpaints
Assembler Communication
Output Converter (® USB:
Custom Build
Build Actions QICPAP: IP address
Linker aaa bbb.coc.ddd
Debugger

Simulator Interface JTAG scan chain
CADI
CMSIS DAP Oursa
GDB Server @S
Ijet
TAG
TI Stellaris
Nu-Link [Log commuriication
FEmicr SPROJ_DIRS\cspycomm log
STLINK

Third-Party Driver
TIMSP-FET
TIXDS

Device 0 ~

JTAG scan chain with muttiple targets

Scan chain contains non-Am devices

Cancel

Note:

Factory Settings

Setup Connmection Breakpoints

Adaptive

Reset
Core -
JTAG/SWD speed Clock setup
O g
1000 CPU clock MHz
® Fixed kHz SWO clock:

[
[Aute

For PSoC™ 64 "Secure Boot" MCU, you must specify a special type of reset, as follows:

4. Connect a J-Link debug probe to the 10-pin adapter (needs to be soldered on the prototyping kits), and
start debugging.

User Guide

67 of 107

002-29893 Rev. *R
2023-01-23

ModusToolbox™ tools package user guide

Infineon

Using applications with third-party tools

7.3.3.8 Program external memory

IAR EWARM has disabled external memory programming by default. The SMIF region in the *.board file must be
enabled manually for PSoC™ 6, AIROC™, and XMC7000 devices. To do that:

1. Openthe Options dialog and select the Debugger item under Category.

2. Click the Download tab and select the Override default .board file check box.

3. Identify the default .board file currently used for this project.

Options for node "iar-helle-world"

X

Category.

General Options

Static Analysis

Runtime Checking
C/iC++ Compiler
Assembler
Qutput Converter
Custom Build
Build Actions
Linker

Simulator

CADI

CMSIS DAP

GDB Server

Iiet

Factory Settings

Setup Download |mages Multicors Extra Options = Plugins

[Verfy download
[Suppress download

Use flash loader(s
[+ Qvenide default board file
|cnnﬁgmash\nademrdmennfpSncsmvscrmAhnard

Edit

Perform mass erase before flashing

4. Copy the default .board file from the IAR Installation directory and paste it next to the IAR project file.

5. Use atext editor to remove comment tags for the SMIF region around the <pass> element, and then
comment out the ignore element for the XIP region in the recently copied file.

Original file:
<pass> <!-—- SFLASH: Public TOC2Z —->
<loader>$TOOLKIT DIR$/config/flashloader/Infineon/PSoC6/CY8C6xxA SFLASH.flash</loader>
<range>CODE 0x16007C00 0x16007FFF</range>
</pass>
<I—— <pass> —><!-— SMIF (XIP Region) —-—»
<l== <loader>$TOOLKIT_DIRS3/config/flashloader/Infineon/PSoCé6/CYBCExxA SMIF.flash</loader> -=>
<1— <range>CODE 0x18000000 0xlFFFFFFF</range> ——>
<!-- «</pass> ——>
<1—— Exclude regions —-—>
<ignore>CODE 0x08000000 Ox0BOFFFFF</ignore> <!-- Exclude SRAM Regicn —-3>
<ignore>CODE O0x16000000 0x160007FF</ignore>» <!-- Exclude SFLASH [SFLASH Start - User Data Start] —-->
<ignore>CODE 0x16001000 0x160019FF</ignore> <!-- Exclude SFLASH [User Data End - NAR Start] —-—>
<ignore>CODE 0x16001C00 0x160059FF</ignore> <!—— [NAR End - Public Rey Start] ——>
<ignore>CODE 0x16006600 0x16007BFF</ignore> <!-- Exclude SFLASH [Public Eey End - TOC2 Start] —->
<ignore>CODE 0x90300000 O0x903FFFFF</ignore>» <!-- Exclude Cy Checksum Region —-->
<ignore>CODE 0x90500000 0x905FFFFF</ignore> <!-- Exclude Cy Metadata Region —->
<ignore>CODE 0x90700000 O0x907FFFFF</ignore> <!-— Exclude eFuse Eegion —-—>
|<ignore>CODE 0x18000000 Ox1FFFFFFF</ignore> <!-- Exclude XIP Region ——>
</flash board>
Edited file:
User Guide 68 of 107 002-29893 Rev. *R

2023-01-23

ModusToolbox™ tools package user guide

Using applications with third-party tools

Infineon

<pass>» <!-- SFLASH:

Public TOCZ ——>

<1loader>$TOOLKIT DIR$/config/flashloader/Infineon/PSoC6/CY8C6xxA SFLASH.flash</loader>
<range>CODE 0x16007C00 0x16007FFF</range>

</pass>

<pass><!—— SMIF (XIP Regicn)
<1oader>$TOOLKIT DIR$/config/flashloader/Infineon/PSoC6/CY8BC6xxA SMIF.flash</loader>
<range>CODE 0x18000000 Ox1FFFFFFF</ranges>

—

</pass>

<!—— Exclude regions ——>

<ignore>CODE 0x08000000 O0x080FFFFF</ignore> <!-- Exclude SRAM Region —->

<ignore>CODE 0x16000000 0x160007FF</ignore> <!-- Exclude SFLASH [SFLASH Start - User Data Start] -->
<ignore>CODE 0x16001000 0x160019FF</ignore> <!-- Exclude SFLAS [User Data End - NAR Start] ——>
<ignore>CODE 0x16001C00 0x160059FF</ignore> <!-- Exclude SFLASH [NAR End - Public Key Start] -->
<ignore>CODE 0x16006600 0x16007BFF</ignore> <!-- Exclude SFLASH [Public Key End - TOCZ Start] -->
<ignore>CODE 0x90300000 0x903FFFFF</ignore> <!-- Exclude Cy Checksum Region —-->

<ignore>CODE 0x90500000 0x905FFFFF</ignore> <!-- Exclude Cy Metadata Region —-->

<ignore>CODE 0x90700000 0x907FFFFF</ignore> <!-- Exclude eFuse Region ——>

|<1—— <lgnore>CODE 0x18000000 OxlFFFFFFF</ignore> --> <!-- Exclude XIP Region -->

</flash_board>

6. Save thefile.

7.

In IAR, click the Browse [...] button, then navigate to and select the edited .board file.

Opticns for node "iar-helle-world"

*

Category.

Debugger

General Options

Static Analysis

Runtime Checking
C/C++ Compiler
Assembler
Qutput Converter
Custom Build
Build Actions
Linker

Simulator
CADI

CMSIS DAP
GDB Server
Ijet
IHink/)Trace
I Stellaris
hu-Link

PE micro
STLINK
Third-Party Driver
TI MSP-FET
TIXDS

Setup Download Images Multicors Extra Options ~ Plugins

[Verify download
[Suppress download
[Use flash loaderls)

[Avenide defautt board file

Factory Settings

|SP ROJ_DIRS\CYBC6kxA board

Edi...

Perform mass erase before flashing

Cancel

8. Click OKwhen you are finished.

7.3.3.9

Erase PSoC™ 6 MCU with external memory enabled

To successfully erase external memory using flashloaders on PSoC™ 6 MCUs, the device's internal
flash must contain valid QSPI configuration data. It may be part of a previously programmed

application, such as the QSPI_XIP example. For more details, review section 7 of application note
AN228740.

1.

Select Project > Download > Erase memory.

»

]

o Download and Debug

Debug without Downloading

b) Attach to Running Target

Make & Restart Debugger

Restart Debugger

Download

SFR Setup

Ctrl

Ctrl=D
Ctrl=R
+5hift=R
3 Download active application
Download file...
Erase memory I

Deselect the check boxes for all regions, except 0x18000000-0x 1fffffff.

User Guide

69 of 107

002-29893 Rev. *R
2023-01-23

https://www.infineon.com/dgdl/Infineon-AN228740_PSoC_6_MCU_Guide_to_Using_Serial_Memory_Interface_(QSPI)-ApplicationNotes-v02_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d3a06356717&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-files

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Using applications with third-party tools

Erase Memory X

Flash loader Range ~

[ci\program Files\AR Systems\Embedded Workbench 2, 3\armconfig/flashloader/Infineon/PSoCa/CYSCExxA_, .. 0x16001a00 - Ox16001bff

Oc: Il,li‘rogram Flles'l.I.-'-\R S\,rstems'l,Embedded Workbench 2. 3'nﬂrm,‘conﬁg,‘ﬂashloaderﬂnﬁneoanSoCﬁfCYSCﬁxxA 0x16005a00 - Ox160065FF

[I|,l:‘rugr.§|m Flles'l,I.-'-\R Systems'l,Embedded Workbench g, 3'ﬁrm,’conﬁg,’ﬂashl0aderﬂnﬁneon,‘PSoCG{CYSCGx){A

£ >

Erase all E Frase | Cancel

3. Click Erase.
4. Select Project > Download > Erase memory again.

5. Select all other regions and deselect 0x18000000-0x 1fffffff.

Erase Memory X

zsh lnader Range 2

\Program Files\IAR Systems'Embedded Workbench 9. 3\armjconfig/flashloader/Infineon/PSoCe/CYaCexxA_... 0x16001a00 - Ox16001bfF
:\Program Files\[AR Systems'Embedded Workbench 2. 3\armjconfig/flashloader/Infineon/PSoCE/CYECExxA_... 0x16005a00 - Ox 160065F
:\Program Files\IAR Systems'Embedded Workbench 9. 3\arm/config/flashloader/Infineon/PSoCe/CYECExxA_... 0x16007c00 - O0x 16007FF

] c:\program Files\IAR Systems\Embedded Workbench 9. 3\arm,/confin/flashloader/Infineon /PSoC6/CYECExxA_... 0x18000000 - Ox 1FFFFHFF
W

< >

Erase all Erase Cancel

6. Click Erase.

7.3.4 Export to Keil pVision 5 (Windows only)

This section describes how to export ModusToolbox™ application to Keil pVision and debug it with CMSIS-DAP
or J-Link.

7.3.4.1 Prerequisites

e ModusToolbox™ 3.0 software and application

e Python 3.8isinstalled in the tools_3.0 directory, and the make build system has been configured to use it.
You don't need to do anything if you use the modus-shell/Cygwin.bat file to run command line tools.

However, if you plan to use your own version of Cygwin or some other type of bash, you will need to ensure
your system is configured correctly to use Python 3.8. Use the CY PYTHON PATH as appropriate.

e Keil pVision version 5.28 or later

e PSoC™6 Kit (for example, CYSCPROTO0-062-4343W) with KitProg3 Firmware

e For J-Link debugging, download and install J-Link software:
https://www.segger.com/downloads/JLink/JLink Windows.exe

7.3.4.2 Process example
1. Create a ModusToolbox™ application.

a. Ifyou use the Project Creator tool, choose "ARM MDK" from the Target IDE pull down menu.

User Guide 70 of 107 002-29893 Rev. *R
2023-01-23

https://www.segger.com/downloads/jlink/JLink_Windows.exe

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Using applications with third-party tools

b. If you use the command line, open an appropriate shell program (see CLI Set-up Instructions), navigate
to the application directory, and Run the following command:

make uvision5 TOOLCHAIN=ARM

Note: This sets the TOOLCHAIN to ARM in the Keil uVision configuration files but not in the
ModusToolbox™ application’s Makefile. Therefore, builds inside Keil uVision will use the ARM
toolchain while builds from the ModusToolbox™ environment will continue to use the toolchain
that was previously specified in the Makefile. You can edit the Makefile’s TOOLCHAIN variable if
you also want ModusToolbox™ builds to use the ARM toolchain.

Note: Check the output log for instructions and information about various flags.

This generates the following files in the application directory:

o mtb-example-psoc6-hello-world.cpdsc

o mtb-example-psoc6-hello-world.cprj

e mtb-example-psoc6-hello-world.gpdsc

The cpdsc file extension should have the association enabled to open it in Keil uVision.

2. Double-click the mtb-example-psoc6-hello-world file (either *.cpdsc or *.cprj, depending on version). This
launches the Keil pVision IDE. The first time you do this, the following dialog displays:

Missing Required Packs

4% Mot installed required packs for Project
| ! mtb-example-psocs-hello-world':

Cypress.PSoCe_DFP.[

Do you want to install them?

3. Click Yes to install the device pack. You only need to do this once.

4. Follow the steps in the Pack Installer to properly install the device pack.

Pack Unzip: Cypress P5oC6_DFP 1.0.0 X

License Agreement

Please read the fallowing license agreement carefully.

To continue with SETUP, you must accept the terms of the Licenze Agreement. To accept the
agreement, click the check box below.

CYPRESS END USER LICEMSE AGREEMENT A

PLEASE READ THIS END USER LICENSE AGREEMENT [“Agreement”’) CAREFULLY BEFORE
DOWMLOADING, INSTALLING, COPYIMG, OR USING THIS SOFTWARE AND

ACCOMPANYING DOCUMENTATION. BY DOWNLOADING, INSTALLING, COFYING OR

USING THE SOFTWARE, vOU ARE AGREEING TO BE BOUND BY THIS AGREEMENT. IF

wOU DO WNOT AGREE TO ALL OF THE TERMS OF THIS AGREEMEMNT, PROMPTLY RETURN
AND DO WOT USE THE SOFTWARE. IFv0U HAVE PURCHASED THIS LICENSE TO THE
SOFTWARE, vOUR RIGHT TO RETURN THE SOFT'WARE EXPIRES 30 DaY'S AFTERYOUR o,

PR LA AR ARCIES AR TO THE A AL Dne A e rm

[| agree to atéhe termz of the preceding License Agreement

| Cancel |

User Guide 71 0f 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Using applications with third-party tools

uVision

| Software Packs folder has been modified.
¥ Reload Packs?

Note: In some cases, you may see the following error message:
SSL caching disabled in Windows Internet settings. Switched to offline mode.

See this link for how to solve this problem:
https://developer.arm.com/documentation/ka002253/latest

When complete, close the Pack Installer and close the Keil uVision IDE. Then double-click the .cpdsc/.cprj file
again and the application will be created for you in the IDE.

5. Right-click on the mtb-example-psoc6-hello-world directory in the pVision Project view, and select Options
for Target '<application-name>' ...

K3 ChUsers\wmedimth-example-psoct-helle-worldimth-example-psect-hello-werld.uvprojx - pWision
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
EXIEEY B
| %%‘3 mitb-example-psocé-helli « 3:\| ﬁ & M_/ @
Project L |
=74 Project: mth-example-ps
=¥ mtb-example-psogs !
5-E5 Source 4% Options for Target 'mtb-example-psocé-hello-world'... Alt+F7
1 main.c Add Group...

@ TARGET_CY2CP ﬁ Manage Project ltems...

® @ capsense Rebuild all target files

@4 corelib)

@ psoctemip .| Build Target F7

& psocbhal ¥ | Show Indude File Dependencies

& psochpdl

& retarget-io

6. Onthedialog, select the C/C++ (AC6) tab.

e Checkthatthe Language C version was automatically set to c99.
o Select "AC5-like warnings" in the Warnings drop-down list.
e Select "-Os balanced" in the Optimization drop-down list.

e Toreduce memory usage, select the One ELF Section per Function check box.

User Guide 72 of 107 002-29893 Rev. *R
2023-01-23

https://developer.arm.com/documentation/ka002253/latest

o~ _.
ModusToolbox™ tools package user guide In fl neon

Using applications with third-party tools

Options for Target 'mth-example-psoct-hello-world’ X
Devicel Targetl Output | Listing I User C/C+=(ACE) |ﬁsrn I Linker I Debug I Ltilities |
— Preprocessor Symbols
Define: I
Undefine: I
— Language / Code Generation
[~ Execute-only Code Wamings: |ACHike Wamings ;I Language C: Icﬂﬂ ;I
o LM led
IOp‘t|m|zat|on. I-Os balanced LI I [~ Tum W, No Eﬂl'pamings Language C++: IcHBB vI
[~ Link-Time Optimization r -w _ ¥ Short enums./wehar
AL SHike Wamings
[~ Split Load and Store Multiple r MISRA Compatible bendent [~ use RTTI
¥ One ELF Section per Func:tionl [~ Read-Write Position Independent [~ No Auto Includes
|”g:1?1: I..\Tﬁb-e:ample-psocﬁhelloworld;.\.Iibs J
Misc I
Controls
Compiler [.c std=c99 —target=am-am-none-eabi -mcpu=cortex-m4 mfpu=fpvd-sp-d16 mfloat-abi=hard < ~
C°”F"°| fno-tti funsigned-char fshort-enums fshort-wchar
string W
0K | Cancel | = Defauts | Help

7. Select the Debug tab, and select KitProg3 CMSIS-DAP as an active debug adapter:

Options for Target 'mtb-example-psocé-hello-world' X

Devicel Target I Output I Listing | User I C/Cs= {.F\.CG]' Asm I Linker Debug | Lilities I

" Use Simulator with restrictions Settings | & Use: |CMSIS-DAP Debugger ﬂ Settings |
[~ Limit Speed to Real-Time OLINRpIS Debuager |
CMSIS-DAP Debugger
- . J-LINK / J-TRACE Cortex .
v W W
¥ Load Application at Startup v Run to main() ¥ Load Models Cortex-M Debugger b main()
Inttialization File: Initializatia ST-Link Debugger
; MULink Debugger .
| J Edt... | | Pomices Dober J Edi... |
)) Stellaris ICDI
Restore Debug Session Settings——————————————————— Restore SiLabs LIDA Debugaer
¥ Breakpoaints ¥ Toolbox [Brg Altera Blaster Cortex Debugger
) Tl XD5 Debugger A

¥ Watch Windows & Performance Analyzer v W mgg—

¥ Memory Display ¥ System Viewer ¥ Memory Display ¥ System Viewer
CPU DLL: Parameter: Driver DLL: Parameter:
ISﬂHMCMS.DLL I—HEM.&P -MPU IS}\F{MCMS.DLL I—I'u'IF‘U
Dialog DLL: Parameter: Dialog DLL: Parameter:
IDCI'u'I.DLL |1;cru14 ITCI‘u'I.DLL I-pCM‘i
[~ Wam f outdated Executable is loaded [~ Wam if outdated Executable is loaded

Manage Component Viewer Description Files ... |

ok | Cancel | Defauts | Help

8. Click OKto close the Options dialog.

User Guide 73 of 107 002-29893 Rev. *R
2023-01-23

o _.
ModusToolbox™ tools package user guide In fl neon

Using applications with third-party tools

9. Select Project > Build target.

Build Output 28
compiling cy_retarget_io.c... ~
linking...

\1ibs\TARGET CYSCPROTO-062-4343W\COMEONENT CM4\TOOLCHAIN ARM\cyScéxxa cmé_dual.sct (144): warning: L€32&W: Pattern *(.cy ramfunc) only matches removed unused sections.
.\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT_ CM4\TCOLCHAIN ARM\cyScéxxa_cm4_dual.sct (170): warning: L6€314W: No section matches pattern *(.cy_app_signature) .
\1ibs\TARGET CYSCPROTO-062-4343W\COMFONENI CM4\TOOLCHAIN ARM\CyScéxxa cmé_dual.sct (180): warning: L€314W: No SeCTion matches Datiern * (.CY_sm esprom) .

.\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT CM4\TOOLCHAIN ARM\cyScéxxa cm4 dual.sct (189): warning: L€314W: No section matches pattern *(.cy sflash user data).
\1ibs\TARGET CYSCPROTO-062-4343W\COMFONENT_CM4\TOOLCHAIN ARM\CyScéxxa cmé_dual.sct (198): warning: L€314W: No Section matches pattern * (.cy_sflash nar).

\1ibs\TARGET CYSCPROTO-082-4343W\COMPONENT CM4\TOOLCHATN RRM\cyScéxxa_cmd_dual.sct(207): warning: L&314W: No section matches pattern *(.cy_sflash public key) .

-\1ibs\TARGET_CYS8CPROTO-062-4343W\CCOMPONENT_CM4\TOOLCHATN ARM\cyScéxxa_cmd_dual.sct(216): warning: L6314W: No section matches pattern *(.Cy_toc_part).

-\1ibs\TARGET CYS8CPROTO-062-4343W\COMPONENT CM4\TOOLCHAIN ARM\cyScéxxa cmd dual.sct (225): warning: L€314W: No section matches pattern *(.cy rtoc_part2).
.\1ibs\TARGET CYSCPFRCTO-062-4343W\CCMFONENT_CM4\TCOLCHAIN ARM\cyScéxxa_cmé4_dual.sct (235): warning: L6€314W: No section matches pattern *(.cy_xip).

.\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT CM4\TOOLCHAIN ARM\cycéxxa cmd_dual.sct (245): warning: Lé314W: No section matches pattern *(.cy_efuse).

.\1ibs\TARGET CYSCFRCTO-062-4343W\CCMEONENT_CM4\TCOLCHAIN ARM\cyScéxxa_cmé4_dual.sct (253): warning: L6€314W: No section matches pattern *(.cymeta).

Program Size: Code=19998 RO-data=8386 RW-data=440 ZI-data=1037896

Finished: 0 information, 11 warning and 0 error messages.

".\mtb-example-psocé-hello-world build\mtb-example-psocé-hello-world.axE" - 0 Error(s), 11 Warning(s).

Build Time Elapsed: 00:01:31 .

CMSIS-DAP Debugger CAP NUM SCRL OVR R/W

To suppress the linker warnings about unused sections defined in the linker scripts, add "6314,6329" to the
Disable Warnings setting in the Project Linker Options.

10. Connect the PSoC™ 6 kit to the host PC.

11. As needed, run the fw-loader tool to make sure the board firmware is upgraded to KitProg3. See KitProg3
User Guide for details. The tool is located in this directory by default:

<user_home>/ModusToolbox/tools_3.0/fw-loader/bin/

12. Select Debug > Start/Stop Debug Session.

K2 C\Users\vmed\mth-example-psoc-hella-worldymtb-example-psoct-hello-world.uvprajx - pVision - O >
File Edit Wiew Project Flash Debug Peripherals Tools SVCS Window Help

NEAd@ % RB|90| @B JRe| Q- e

AEL IR AT
Registers a1 B Disassembly [|
Register I Value I; Ox10006EDC 4770 BX ir -
e 0x10006EDZ2 QOO0 MCVS i, 0

9g: {
100: cy_rslt_t resultc;
101:
102: /* Inmitialize the device and board peripherals */
103: result = cybsp init();
104:
aAr I & Mo e . E_xw_a e e e e e e o - I A
£ >
d main.c d oy_utils.h * X
a5 ¥ int -
=14 .
Lo B R L R L LR R L L r g e S Lt S LLEttess
o8 int main (void)
PP es e
100 cy_rslt_t result;
101
. 102 /% Imitiglize the device and board peripherals */
i 103 result = cybsp_init();
104

. 105 /* Board init failed. Stop program execution */

. Thread) 106 if (result != CY_RSLT_SUCCESS)

H e mne oA 1077 I '] ¥
[iE] Project | =5 Registers < o
Command o B call stack + Locals n B3
Load "C:\\Users\‘\wvmed\\mtb-example-psocé-hello-wo: Name Location/Value Type

=% main 10x 10006EDS int £} -~
= > ¥ result <not in scope> auto—uin'v

> (| T a
ASS5IGN BreakDisable BreakEnable BreakKill BIeakListl @3Ca|l5tack+Locals Memary 1

CMSIS-DAP Debugger

User Guide 74 of 107 002-29893 Rev. *R
2023-01-23

https://www.infineon.com/documentation/development-kitsboards/kitprog-user-guide
https://www.infineon.com/documentation/development-kitsboards/kitprog-user-guide

o~ _.
ModusToolbox™ tools package user guide In fl neon

Using applications with third-party tools

You can view the system and peripheral registers in the SVD view.

Ch\Users\vmed\mtb-example-psoch-hello-worldmtb-example-psoc-hello-world.uvprojx - pVision - O *
File Edit View Project Flash Debug | Peripherals Tools SVCS Window Help
IWEH@|.I—J@:|"? | System Viewer M BAckup) vay&|@-|. @ﬁ'||E|'|‘K
= ' v | cPuss]
Ros“-r|®| ™ "{}| d>| B Core Peripherals >|_|] - Ev| i .
CsDo
Registers 2 El Disassembly [a B crpuss O x |
DMAC
Register [Vaie | [0x10006EDO 4770 BX ~ >
Y 0x10006EDZ 0000 MOVS oW 4
og: | EFUSE Property Value
100: cy_rslt_t res = IDENTITY 0x00000F03 ﬂ
101: FAULT
: p T
102: /* Imitialize FLASHC board peripherals *;
103: result = cybs] GRIO N5 |7
104: v PC Onc00
i fe meeea ioie HSIOM e ez et o
< > MS D OF
[YE = CM4_STATUS 000000010
L] mainc | |] gLutils.h IPC vx SLEEPING r
i L LCDO 2 SLEEPDEEP]
a7 R R R R R R R R i R R R R R R R R "
98 int main(void) SECEERIE PWR_DONE ~
LNl Pass £ CM4_CLOCK CTL
(< 0B0FF3! 100 cy rslt t res FAST_INT_DIV 000
0100023 101 - FOMO =
: cwc
(= 10006E 102 /* Initialize PERI 'E board peripherals * CM4. INTD STATUS 0
0:610000 103 result = cybs| PROFILE U .
B 104 CM4_INT1_STATUS
ini EROT uti Fe— |
105 /* Board init rogram execution */ L CRAA KT CTATIIE
106 if (result != SAR 5) FAST_INT_DIV ~
Thread < 107 { SCB » [Bits 15..8] RW (@ 0x40200008) Specifies the
——=o-2 B — 1nn v neawDT ¥ || fast clock divider (from the high frequency
&l Project | = Registers < SDHC 4 > clock 'clk_hf' to the peripheral clock w
Command SMARTIO F‘W’" i
Load "C:\\Users‘\‘\vmed\\mtb-example-psocé-hello-wor SMIFD iess‘l -
. |
SRSS
TCPWM 3
<
USBFSO
>
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet v
CMSIS-DAP Debugger t1: 0.00091320 sec L]

7.3.4.3 To use KitProg3/MiniProg4, CMSIS-DAP, and ULink2 debuggers

1. Select the Device tab in the Options for Target dialog and check that M4 core is selected:

Options for Target 'mtb-example-psoct-gpio-interrupt’ X

Device |Targe1| Outputl Listingl User I C/Cs+ {.ﬂ.CG}I Asm I Linkerl Debugl Util'rtiesl

ISoﬂware Packs LI
Vendor: Cypress Software Pack
Device: CYSCE247BZ)-D54-Cortex-M4 Pack: ICypress.PSoCG_DFP.‘I.D.D
Toolset: ARM URL: hitp-//www keeil com/pack
Search: I
4 CYSCE247BZI-D54 :I PSoC 62 (Perfformance Line): Dual-core Cortex-M4./M0+ MCL series

with programmable digital and analog peripherals, advanced

€3_CvBC6247BZI-D54 Cortex-MOp graphics, CapSense, crypto and secure boot security.

E| CYBCE247BZ1-D54:Cortex-M4
% CVBCE247FDI-D02
i§ CYBCH247FDI-D32
[CY8C6247FDI-D52 J
[CVBCE247FTI-D52
% CYBCE247WI-D54
[CVBCE248A71-52D14

i e
0K I Cancel Defaults Help

User Guide 75 of 107 002-29893 Rev. *R
2023-01-23

ModusToolbox™ tools package user guide

Using applications with third-party tools

2. Select the Debug tab.

Infineon

Note: To use the ULink2 probe for multi-core debugging, select the CMSIS-DAP Debugger instead of

ULink for each core of the project (CM4 and CMOP).

3. Click "Settings."

KA Options for Target 'mth-example-psoct-gpic-interrupt’

Device] Target] Qutput] Listing] User] C/C++ {ACG}] Asm] Linker Debug l Litilities]

I~ Limit Speed to Real-Time

Iv¥ Load Application at Startup ¥ Run to main() Iv¥ Load Application at Startup ¥ Run to main()

Inttialization File: Inttialization File:

(" Use Simulator with restrictions Settings | | % Use: [CMSIS-DAP Debugger jl Settings I

H
Restore Debug Session Settings

|v Breakpoints ¥ Toolbox

¥ Watch Windows & Performance Analyzer

Iv¥ Memory Display [v¥ System Viewer

CPU DLL: Parameter:

Restore Debug Session Settings
|v Breakpoirts ¥ Toolbox
W Watch Windows

ol ea |

v Memory Display [v System Viewer

Driver DLL: Parameter:

|SARMCM3.DLL |-REMAP MPU
Dialog DLL: Parameter:

|SARMCM3.DLL | MPU
Dialog DLL: Parameter:

|DCM.DLL |-pCM4

™ Wam if outdated Executable is loaded

|TCM.DLL |-pCM4

™ Wam if outdated Executable is loaded

Manage Component Viewer Description Files ... |

oK | camcd | Defauts | Help

4. Onthe Target Driver Setup dialog, on the Debug tab, select the following:

e setPortto"SW"
e setMaxClockto "1 MHz"
e setConnect to "Normal"
e setReset:
e ForPSoC™6,to"VECTRESET"

e ForPSoC™4, PMG1, and AIROC™ CYW208xx, to "SYSRESETREQ"

e enable Reset after Connect option

Debug ITIEICE] Flash Download] Pack]

CMSIS-DAP - JTAG/SW Adapter SW Device
|C‘,'press MiniProg4 [CMSIS-D:j IDCODE Device Name

SWDIO : &
Serial No: [0516198B0223741 (@ x6BAD2477 ARM CoreSight SW-DP
Firmware Version: |2.0.0
P ow rafow <] || ©
-
M occ ez <] e v

Debug
Connect & Reset Options Cache Options Download Options

Connect: {Nomal - Reset:IEECTRESET - I Iv¥ Cache Code I~ Verfy Code Download
v Cache Memory ™ Download to Flash
og Debug Accesses

™ Stop after Reset

User Guide 76 of 107

oK | Cancel Help

002-29893 Rev. *R
2023-01-23

ModusToolbox™ tools package user guide

Using applications with third-party tools

5.

Select the Flash Download tab and select "Reset and Run" option after download, if needed:

CMSIS-DAP Cortex-M Target Driver Setup

Debugl Trace Fash Download | Pack I

*

— Download Function RAM for Algorithm
LaRD " Erase Full Chip ¥ Program
_‘Fi % Erase Sectors [Ve Start:l[b(ﬂBDZS«iDD Size: |0000S000
C oo B[R]
r Programming Algorithm
| Device Size | Device Type | Address Range |
CY8Choo_SFLASH_TOC2 1k On-chip Flash 16007C00H - 16007FFFH
CY8Choo_SFLASH_PKEY * On-chip Flash 16005A00H - 160065FFH
CY8Choo_SFLASH_USER pild On-chip Flash 16000800H - 16000FFFH
CY8Choor_WFLASH 32k On-chip Flash 14000000H - 14007FFFH
CYBCExT_sect256KB ™ On-chip Flash 10000000H - 100FFFFFH
Start:l Size:
Add | Remove |
ok | Cancel | Help

Select the Pack tab and check if "Cypress.PSoC6_DFP" is enabled:

CMSIS-DAP Cortex-M Target Driver Setup

Debug I Trace I Flash Download Pack

*

Debug Description
Pack: Cypress.PSoCE&_DFP.1.0.0

¥ Enable I~ Enable Flash Sequences

™ Log Sequences: ID:"-.CyP"-tmp"-new"-.KeiIiject"-.CYSCKIT—EEE-";"J'IFI-BT‘-.Erd"-nﬂb-example-psocE-gpio-inter

Configuration: I

Edit... |

0K I Cancel

Help

User Guide 77 of 107

Infineon

002-29893 Rev. *R
2023-01-23

ModusToolbox™ tools package user guide

Using applications with third-party tools

7.3.4.4 To use J-Link debugger with PSoC™ MCUs

1. Make sure you have J-Link software version 6.62 or newer.

Infineon

2. Select the Debug tab in the Options for Target dialog, select J-LINK / J-TRACE Cortex as debug adapter, and

click "Settings":

WA Options for Target 'mtb-example-psoch-gpio-interrupt’

Device] Target] Qutput] Listing] User] C/C++ {ACG}] Asm] Linker Debug l Litilties]

Manage Component Viewer Description Files ... |

" Use Simulator with restrictions Settings @ Use: lJ-LINK / J-TRACE Cortex v Settings l
™ Limit Speed to Real-Time
¥ Load Application at Startup ¥ Run to main() ¥ Load Application at Startup ¥ Run to main()
Initialization File: Initialization File:
Restore Debug Session Settings Restore Debug Session Settings

I¥ Breakpoints v Toolbox [v¥ Breakpoints ¥ Toolbox

¥ Watch Windows & Performance Analyzer ¥ Watch Windows

[v Memoary Display v System Viewer v Memary Display ¥ System Viewer
CPU DLL: Parameter: Driver DLL: Parameter:
|SARMCM3.DLL. |-REMAP -MPU |SARMCM3.DLL |-MPU
Dialog DLL: Parameter: Dialog DLL: Parameter:
|pcm.DLL [pCM4 [TCMDLL |pCM4
[~ Wam if outdated Executable is loaded [~ Wam if outdated Executable is loaded

0K | Cancel | Defauts | Help

3. Ifyou see the following message, click OKin the Device selection message box:

Debug lTrace] Fash Download]
J-Link J-Trace Adapter JTAG Device Chain
5N: | -
Device: ’— Ty
wwe [A T

]
P L J
H B

The selected device "CYBCE247EZI-D54: CORTEX-M4" is unknown to this version of the J-Link software.

Flease make sure that =t least the core J-Link shall connect to, is selected.
| Proper device selection is required to use the J-Link internal flash loaders
for flash downloed or unlimited flash breakpoints.

For some devices which require a specizl handling, selection of the correct device is important. 1%
User Guide 78 of 107

002-29893 Rev. *R
2023-01-23

ModusToolbox™ tools package user guide

Using applications with third-party tools

4. Select appropriate target in Wizard:

H SEGGER J-Link V6.62b - Target device settings X
Selected Device: CY8CExx7_CM4 Lite Endian ~ | (Core #0 -
Manufacturer Device Core MumCores Flash Size RAM Size &
Cypress CYBC o CM4 Cortex-M4 1 512KB + 32 K. 32KB
Cypress CYBCHb_CM4_sect256KB Cortex-M4 1 512KB + 32 K. 32KB
Cypress CY8CHeT_CMOp Cortex-MD 1 1MB+32KB.. 32KB
Cypress CY8ChaT_CMOp_sect2 56KB Cortex-M0 1 1TMBE +32KB.. 32KB
Cypress CY8CHaT_CMOp_sect236KB_tm Cortex-MO 1 1MB +32KB.. 32KB
Cypress CYBCET_CMOp_tm Cortex-MD 1MB + 32 KB... 32 KB
CYECHoT_CM4 _ 1MB - 32 KB.
Cypress CYBCHT_CM4_sect256KB Cortex M4 1MB +32KBE.. 32KB
Cypress CY8CHoa_CMOp Cortex-M0 1 2MB +32KB.. 32KB
Cypress CY8CHout_CMOp_sect256KB Cortex-M0 1 2MB + 32KB.. 32KB
Cypress CYB8CEwd_CMOp_sect256KB_t.. Cortex-MO 1 2MB + 32 KB.. 32KB
Cypress CY8CHots_CMOp_tm Cortex-M0 1 2MB + 32KB.. 32KB
Cypress CYBChoct_CM4 Cortex-M4 1 2MB + 32 KB.. 32KB
Cypress CYBCEA_CM4_sect236KB Cortex-M4 1 2MB + 32 KB.. 32KB
Cypress CYBL10hoo: Cortex-MD 1 128 KB 16 KB v
= i an e . aan . nreen an en - J
Cancel
5. Goto Debugtab in Target Driver Setup dialog and select:
e setPortto"SW"
e setMaxClockto "1 MHz"
e setConnectto "Normal"
e setResetto"Normal"
e enable Reset after Connect option
Cortex ILink/ITrace Target Driver Setup X

Device:

—J-Link / J-Trace Adapter

SN: IED‘I 07842 v I

HW : V10.10
FW: |J-Link V10 compiled Jan 7 2C

Debug |T|E|ce I Flash Downloadl

J-Link

di: I V6.62d

— SW Device
IDCODE | Device Name | Move
SWD | @ 0<6BAD2477 ARM CoreSight SW-DP Up |

% Automatic Detection

" Manual Configuration

|0 CODE: I
Device Mame: I

Add | Delete | Updatel IR len: I

Cache Options Download Options

Reset:fNomal — ~|l| ¥ CacheCode | | I Verfy Code Dowrload

¥ Cache Memory | | [T Download to Fash

r Interface TCPAP Misc
@ USB TCPAP Network Settings .
IP-Address Part {Auto: 0) Autodetect ik Info |
Sean | 127 . 0] 1
| | Fing | JLink Crd |
State: ready
ok | Cancel | appn |
User Guide 79 of 107

Infineon

002-29893 Rev. *R
2023-01-23

ModusToolbox™ tools package user guide

Using applications with third-party tools

Infineon

6. Selectthe Flash Download tab in Target Driver Setup dialog and select "Reset and Run" option after

download if needed:

Cortex JLink/JTrace Target Driver Setup

Debug] Trace Hash Download]

Download Function RAM for Algorithm
LOAD ip v Program

[V Weri Start: |be0B026400 Size: |x8000
© Donot Frase

Programming Algorithm

] |

Description | Device Size | Device Type | Address Range |

CYBCHoo_SFLASH_TOC2 Tk On-chip Flash 16007C00H - 16007FFFH

CYBCHoo_SFLASH_PKEY ks On-chip Flash 16005A00H - 160065FFH

CYBCHoo_SFLASH_USER 2 On-chip Flash 16000800H - 16000FFFH

CYBCHoo_WFLASH 3k On-chip Flash 14000000H - 14007FFFH

CYBCHo7_sect256KB M On-chip Flash 10000000H - 100FFFFFH
Start: | Size: |

7.3.4.5 To use J-Link debugger with XMC7000 devices

Program set-up instructions

1. Select the Debug tab in the Options for Target dialog, select "J-LINK / J-TRACE Cortex" as the debug

adapter, and click Settings.

kA Options for Target 'Target 1'

Device] Target] Qutput] Listing] User] C/Ce++ {ACG}] Asm] Linker Debug l Ltilties]

1
" Use Simulator with restrictions Settings + lse: ||J—LINK / J-TRACE Cortex j |

™ Limit Speed to Real-Time

Initialization File: Initialization File:

Restore Debug Session Settings Restore Debug Session Settings

¥ Load Application at Startup ¥ Run to main() ¥ Load Application at Startup ¥ Run to main(}

| o] e ||| L e |

™ Wam if outdated Executable is loaded ™ Wam if outdated Executable is loaded

Manage Component Viewer Description Files ... |

[v Breakpoints v Toolbox [v Breakpoints v Toolbox
¥ Watch Windows & Performance Analyzer ¥ Watch Windows ¥ Tracepoints
Iv¥ Memory Display [v¥ System Viewer Iv¥ Memaory Display v System Viewer
CPU DALL: Parameter: Driver DLL: Parameter:
[SARMCM3.DLL |-REMAP -MPU |SARMCM3.DLL |-MPU
Dialog DLL: Parameter: Dialog DLL: Parameter:
|pcmDLL [pCM7 |TCM.DLL [pCM7

oK Cancel Defauilts |

Help

User Guide 80 of 107

002-29893 Rev. *R
2023-01-23

ModusToolbox™ tools package user guide

Using applications with third-party tools

Infineon

2. Onthe Debug tab in the Cortex J-Link/JTrace Target Driver Setup dialog, select "Connect under Reset" on

the Reset pull-down menu, and then click OK.

Cortex JLink/JTrace Target Driver Setup

Debug |Trace | Flash Download |

HW : V4.00 di: I Vi
FW : J-Link Uttra V4 compiled Sep .
Max Clock: % Automatic Detection

—d-Link / J-Trace Adapter ———— ~ 5W Device
SN: [504403253 -] IDCODE | Device Name | Move
Trs Iink Ultra SWD | @ (x6BA02477 ARM CoreSight SW-DP

Drowry

HE

|0 CODE: I

Auto Clk | Add | Delete | Updatel IR len: I

Port:
ISW j |2 MHz j € Manual Configuration Device Mame; I

Connect & Reset Options Cache Options Download Options ————
Connect: INorrnaI vl Reset: |l - ¥ Cache Code [Verify Code Download
[~ Reset after Connect Mormal [¥ Cache Memory [~ Dowrloadto Fash
Core
Reset Pin
rInteface ———————— ~ TCP/IP [l gVl e tEr Misc
. Networl Halt atter Boot
& use TCPAP IP-ag|Hak before Bootloader | o o) Adtodetect | JLink Info |
sean | T27|AD Lk ater Kerel |- [0 fra | sk Cnd |
) Core and Peripherals nd n
State: ready LPC1200

ok | cancel |

Apply

3. Select the Utilities tab in the Options for Target dialog and deselect the Update target before Debugging

check box.

Options for Target ‘Target 1'

Device I Targetl OLrtputI Listingl User I C/C++ {.RCG}I Asm I Linkerl Debug Lhilities

r—Configure Flash Menu Command

¢ Use Target Driver for Flash Programming [Use Debug Driver

— Use Debug Driver —

Settings | | [iUpdate Target before Debuaging: |

i Fie: J Ed'rt...l

" Use Extemal Tool for Flash Programming

Command:l

&

Nguments:l

™ Run Independent

r—Configure Image File Processing (FCARM):

Output File: Add Output File to Group:
Source LI
Image Files Root Folder: I [Generate Listing
OK | Cancel | Defauts | Help

User Guide 81 of 107

002-29893 Rev. *R
2023-01-23

Infineon

ModusToolbox™ tools package user guide

Using applications with third-party tools

Debug set-up instructions

1. Select the Debug tab in the Options for Target dialog, select "J-LINK / J-TRACE Cortex" as the debug
adapter, and click Settings.

Options for Target ‘Target 1" *

Device I Target I Qutput I Listing I User I C/Ce++ {.RCG]I Asm I Linker Debug | Ltilties I

Settings | & Use: ||J—LINK!J-TRACECortex

¥ Load Application at Startup

LI Settings Il

7 Use Simulator with restrictions
[Limit Speed to Real-Time

¥ Load Application at Startup ¥ Run ta main{)

Initialization File: Initialization File:

¥ Run to main()
I\
|] e |] v

=] e |
Restore Debug Session Settings Restore Debug Session Settings——————————————————

v Breakpoirts ¥ Toolbox v Breakpoirts ¥ Toolbox
V¥ Watch Windows & Performance Analyzer v Watch Windows ¥ Tracepoints

¥ Memary Display [V System Viewer V¥ Memory Display V¥ System Viewer
CPU DALL: Parameter: Driver DLL: Parameter:
[SARMCM3.DLL |-REMAP -MPU [SARMCM3.DLL |-MPU
Dialog DLL: Parameter: Dialog DLL: Parameter:
IDCM.DLL I-pCMT-’ ITCM.DLL I-pCMT-’

[~ Wam if outdated Executable is loaded [~ Wam i outdated Executable is loaded

Manage Component Viewer Description Files ... |

ok | Canced | Defauts | Help

2. Onthe Debug tab in the Target Driver Setup dialog:

- Reset pull-down: select "Normal", "Core" or "Reset Pin"
- Download Options: enable "Verify Code Download" and "Download to Flash"

Cortex JLink/JTrace Target Driver Setup *

Debug |Trace I Flash Downloadl

—dJ-Link # J-Trace Adapter — SW Device
SN: [504403253 - IDCODE | Device Name | Move
e Iink Utra SWD | (3 (x6BA02477 ARM CoreSight SW-DP LUp |
Hw: [vaoo ai:[w70 D°W”|
FW J-Link Ultra V4 compiled Sep .
Max Clock: & Automatic D etection |0 CODE: I

Port:
ISW ;I IZ MHz ;I £ Manual Configuration Device Name: I—
Auto Clic | Add I Delete | Update | IR len: I

Connect & Reset Options r— Cache Options Download Options
Connect: INorrnal vl Reset: ¥ Cache Code ¥ Verify Code Download
I~ Reset atr Cornect W Cache Memary | [Donrload o Fash

Core
Reset Pin
—Inteface —————— ~ TCP/IP[Connect under Heset . [Misc
@& USB (" TCPAP Networ Halt after Bootload .
Ay before Boctloader | o g) | Atodetec | Jink Info |
LI | 127 | ADI Hatt after Kemel 0 :
Core and Peripherals Fing | JLink Cmd |
State: ready LPC1200
oK I Cancel | Apply |
User Guide 82 of 107 002-29893 Rev. *R

2023-01-23

ModusToolbox™ tools package user guide

Using applications with third-party tools

7.3.4.6 Program external memory
1. Download internal flash as described above.

Notice "No Algorithm found for: 18000000H - 1800FFFFH" warning.

Infineon

2. Select the Flash Download tab in Target Driver Setup dialog and remove all programming algorithms for

On-chip Flash and add programming algorithm for External Flash SPI:

CMSIS-DAP Cortex-M Target Driver Setup d
Debug I Trace FHash Download | Pack I
— Download Function RAM for Algorithm
Lopn © EreseFull Chip ¥ Program
Fi_ % FErase Sectors W Verfy Start:l{b:ﬂBﬂQGdDD Size: |(«00008000
" Donot Erase |V Reset and Run
— Programming Algorithm
CYBCHoor_SFLASH_TOC2 On-chip Flash 16007C00H - 16007FFFH
CYBCHoo_SFLASH_PKEY On-chip Flash 16005A00H - 160065FFH
CYBCHoo_SFLASH_USER On-chip Flash 16000800H - 16000FFFH
CYBCHoo_WFLASH On-chip Flash 14000000H - 14007FFFH
CYBCHx7_sect256KB On-chip Flash 10000000H - 100FFFFFH
Start:l[bdGDD?CDD Size: | 00000400
|
ok | cance | Help
CMSIS-DAP Cortex-M Target Driver Setup d
Debugl Trace Fash Download | Pack I
— Download Function RAM for Algorithm
LORAD " Erase Full Chip W Program
Fi_ % Frase Sectors [V Verffy Start:I{b(ﬂHDZG-lDD Size: | 00008000
" DonotErase |V Reset and Run
r— Programming Algorithm
._'..lil.l &Vi ize = D A."l_'_' Cgroe
CY BCRoo_SMIF 128 Ext. Flash 5P| 18000000H - 1FFFFFFFH
Start:l[deDDDDDD Size: |R«02000000
Add | Remove |
ok | Canced | Help

3. Download flash.

Notice warnings:

e No Algorithm found for: 10000000H - 1000182FH
e No Algorithm found for: 10002000H - 10007E5BH
e No Algorithm found for: 16007CO0H - 16007DFFH

User Guide 83 of 107

002-29893 Rev. *R
2023-01-23

ModusToolbox™ tools package user guide

Using applications with third-party tools

7.3.4.7 Erase external memory

Infineon

1. Select the Flash Download tab in Target Driver Setup dialog and remove all programming algorithms for

On-chip Flash and add programming algorithm for External Flash SPI:

Debug I Trace Fash Download | Pack I

— Download Function RAM for Algorithm
LORD ¢~ Erase Ful Chip ¥ Progmm
Fq © EeseSectos [V Verdy Start: [<08026400 Size: |(<00002000
" Donot Emse [Resetand Run

— Programming Algerithm

Descrption Address Ha

i evice Size D nge
CY8CHoox_SMIF 128M Ext. Flash 5P| 18000000H - 1FFFFFFFH

Start: |[k1RDDDDDD Size: |(<02000000

Add | Remave |

CMSIS-DAP Cortex-M Target Driver Setup X
Debugl Trace Flash Download IF‘ack I
— Download Function RAM for Algorithm
LOAD " Erase Ful Chip [¥ Program
a_ & Erase Sectos ¥ Verfy Start: IMMDD Size: | (00008000
" Donot Erase ¥ Resetand Run
— Programming Algarithm
CYBCHox_SFLASH_TOC2 On-chip Flash 16007C00H - 16007FFFH
CYBChoo_SFLASH_PKEY On-chip Flash 16005A00H - 160065FFH
CYBChoo_SFLASH_USER On-chip Flash 16000800H - 16000FFFH
CYBChoo_WFLASH On-chip Flash 14000000H - 14007FFFH
CYBChoT7_sect256KB On-chip Flash 10000000H - 100FFFFFH
Start: [Bc16007C00 Size: | 300000400
Add | I Remove I
ok | Cancel | Help
CMSIS-DAP Cortex-M Target Driver Setup X

2. Click Flash > Erase in menu bar.

User Guide 84 of 107

002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Using applications with third-party tools

7.4 Multi-core debugging

Infineon provides different multi-core MCUs in its portfolio. Sometimes you need to debug complex problems
usually connected with IPC. Multi-core debugging allows you to simultaneously debug two or more cores
available on the target MCU. This section applies to PSoC™ 6 MCUs, as well as the XMC7000 device family.

Multi-core debugging is supported for the following IDEs: Eclipse IDE for ModusToolbox™, VS Code, IAR EWARM,
and Keil pVision. For details about creating a ModusToolbox™ application for your desired IDE, see Exporting to

supported IDEs.

7.4.1 Timing

When launching a multi-core debug group, do not start debugging (resume, step, etc.) in the first launched
sessions until all the remaingn launch configurations in a group have been initiated and started successfully.

7.4.2 CMO+ core rule

In PSoC™ 6, TRAVEO™ 2, and XMC7000 devices, system calls are always performed by the primary CMO+ core,
even if itis initiated (via NMI) by the secondary core (CM4 or CM7). Because of this, you have to follow this rule
for a smooth debugging experience of a multi-core application:

Attention: The CMO+ core must NOT be halted (suspended at the breakpoint) when another core (CM4 or
CM7) is requesting system calls. You must resume the CM0+ core and let it run some code in
your application [for example, Cy_SysLib_Delay()], or just perform several single-step
operations, while the CM4 code is invoking the system call.

If you deviate from this rule, you may experience different issues depending on the usage scenarios, including
the application state, IDE, and debugger:

o Thedebugger can be confused by the unexpected value of the Program Counter for the CM0+ core when,
instead of performing the single-step operation, it jumps to the SROM area executing the system call
requested by the CM4 or CMT core.

e The CM4 or CM7 core may be stuck in an endless loop in the code that just initiated the system call and
waiting for its completion, while the CM0+ core is suspended at the breakpoint.

User Guide 85 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Using applications with third-party tools

7.4.3 Eclipse IDE for ModusToolbox™

All projects created for the Eclipse IDE for ModusToolbox™ provide a set of ready-to-use debug configurations.
They support program, erase, debug, and attach with different probes:

e KitProg3 onboard programmer

e MiniProg4

e J-Link

The configurations support debugging one core at a time and multiple cores as well. The most commonly used

debug configurations are displayed in the IDE Quick Panel. Depending on what you select in the Project
Explorer, the Quick Panel shows different debug configurations, as shown.

: mtw-psoch-multi-core - Multicore_Empty_App/README.md - Eclipse IDE for ModusTo E miw-psocG-multi-cere - Eclipse IDE for ModusToelbox™
File Edit Navigate Search Project Run Window Help File Edit MNavigate Search Project Run Window Help
i [mi] | ®-&{-ai8: EEARS il | ®-]-miB! o |2 2| S
[#5 Project Explorer &2 45 Debug 11} Registers 5, Peripherals = A [Project Explorer [% Debug il Registers 2, Peripherals =g
BES T 8 257 8
25 mib_shared ~ S mith_shared ~
v 125 Multicore_Empty_App w125 Multicore_Empty_App
4 Binaries % Binaries
(= bsps (= bsps
(= proj_cmOp (= proj_cm0p
= proj_cmd (2= proj_cmé
(= settings (= settings

@ common_app.mk

% common_app.mk
@ commen.mk

@ common.mk

|5l LICENSE |Z| LICENSE

@ Makefile Makefile

|| psocb_multi-core.custom_argvars |Z| psech_multi-core.custom_argvars

© psoct_multi-core.enw © psoct_multi-core.eww
[l REANMAF s

[@1 REANMAF mil he
[Quick Panel (3= Variables &' Expressions g Breakpoints = A [Quick Panel (x)- Variables &' Expressions 9g Breakpoints =8
Eclipse IDE for 2 Eclipse IDE for 2
ModusToolbox™ ModusToolbox™
* Start « Start

& New Application & New Application

E Import Existing Application In-Place g Import Existing Application In-Place

o Search Online for Code Examples o Search Online for Code Examples

P Search Online for Libraries and BSPs o Search Online for Libraries and BSPs

&P Training Material
&, Refresh Quick Panel

& Training Material
&, Refresh Quick Panel

+ Multicore_Empty App (TARGET_APP_CYSCPROTO-062-4343W)
&, Build Application

9 Clean Application

+ Multicore_Empty_App (TARGET_APP_CY8CPROTO-062-4343W)
&, Build Application
@ Clean Application

= Launches

~ Launches
Q Multicore_Empty_App Program Application (ILink] 45 Multicore_Empty_App.proj_cm0p Debug (ILink)

Q Multicore Empty_App Pragram Application (KitProg3 MiniProg4) 45 Multicore Empty_App.proj_cm0p Debug (KitProg3 MiniProg4)

@ Multicore_Empty_App Debug MultiCore (JLink)) Multicore_Empty_App Program Application (JLink}

8 Multicore Empty_App Debug MultiCere (KitProg3_MiniProgd)) Multicore_ Empty_App Program Application (KitProg3_MiniProg4)

&, Generate Launches for Multicore_Empty_App

Q Generate Launches for Multicore_Empty_App

e When you select the top-level application, the Quick Panel shows multi-core debug configurations, so you
can launch multi-core debugging by using the Debug MultiCore configuration.

e When you select one of the core-specific projects, the Quick Panel shows debug configurations that are
specific to the selected core, so you can launch single-core debugging.

Note: The complete list of all launch configurations are available in the Debug Configurations window.

User Guide 86 of 107 002-29893 Rev. *R

2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Using applications with third-party tools

To launch multi-core debugging, select the Debug MultiCore configuration in the Quick Panel. This builds all
projects within the application, programs the application into MCU's flash, and starts debugging. You will see
something like the following for a dual-core MCU:

mtw-psocB-multi-core - Multicore_Empty_App.proj_cm0Op/main.c - Eclipse IDE for ModusToolbox™
File Edit Source Refactor Navigate Search Project Run Window Help

£ il @ |®-{-@iQi 0@ \ | &i%-0-Q-i® 5~ Yo a
[Project Explorer 4 Debug 52 ¥if Registers =, Peripherals = 8 README.md README.md [%] README.md] 0x190
=] | i 8 obtained this Softwar "

* If no EULA applies, Cypress hereby grants you a persong
“ non-transferable license to copy, modify, and compile 1
* source code solely for use in connection with Cypress's
s arm-none-eabi-gdb.exe “ integrated circuit products. Any reproduction, modifid
s arm-none-eabi-gdb.exe compilation, or representation of this Software except
* above is prohibited without the express written permisg

v & Multicore_ Empty_App Debug MultiCore (KitProg3_MiniProgd) [Launch Graup]
5 openocd.exe

v ulticore_Empty_App.proj_cmUp Debug (KitFrog3_MiniProg pen el

.
v i proj emOp.elf Disclaimer: THIS SOFTWARE IS PROVIDED AS-IS, WITH NO WA

v o Thread #1 1 (Name: Current Execution) (Suspended : Breakpoint) " EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, NOWI
= main() at main.c:49 0x100000ca - ERCHANTABILITY AND FITNESS FOR A PARTIC
= openocd.exe CMo debug process * reserves the right to make changes to the Software wit

5 arm-none-eabi-gdb.exe : dcai ‘n?t as}sun‘ﬁ al?',‘ liibi%it‘;‘,‘/aﬂ:_iingrce": of *.:hekapplic
TVt by gy e RV O s P0G L 1 T Lol o St e e]
v & proj_cmd.eff “* failure of the Cypress product may reasonably be expec]
5@ Thread #1 (Running : User Request) CM4 debug process significant property damage, injury or death ("High Riq

s arm-none-eabi-gdb.exe * including Cypress’s product in a High Risk Preduct, the

“ of such system or application assumes all risk of such
so agrees to indemnify Cypress against all liability.

#include “cy_pdl.h"
#include "cycfg.h”

int main(void)

< / ble global i /
/* Enable global interrupts */
[Quick Panel () Variables &' Expressions ©g Breakpoints = __enable_irq();
Eclipse IDE for /* Enable CM4. CY_CORTEX_M4 APPL_ADDR must be updated
M d T lb ™ Cy_SysEnableCM4(CY_CORTEX_M4 APPL_ADDR);
oduslioolbox
for (53)
~ Start {

Cy_SysPm_DeepSleep(CY_SYSPH _WAIT_FOR_INTERRUPT);
[New Application

& Import Existing Application In-Place
) - P /% [0 END OF ETIE =/

Once a session has started, the CMO+ core is halted at the beginning of main (), while the CM4 core is spinning
in an endless loop in boot code, waiting for start. It will start and halt at main () as soon as the application
running on the CMO+ executes the Cy SysEnableCM4 () function.

In the Debug View, you can observe two debug processes, each of them associated with a specific core. You can
switch between the cores by selecting the appropriate process. Any debug view like Registers View or Variables
View will refresh their values once you switch to another core.

Note: Resetting a debug session is only possible when you select the CMO+ debug process. Also, you must
ensure that the CM4 has resumed before doing so, since when the core is halted it cannot detect
external that a reset has happened. If not, the IDE and the MCU will go out of sync.

User Guide 87 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Using applications with third-party tools

7.4.4 VS Code

Projects created for VS Code also provide debug configurations in the same manner as the Eclipse IDE. They
support program, erase, debug, and attach with these probes:

e KitProg3 onboard programmer

e MiniProg4

e J-Link

The configurations support debugging one core at a time and multiple cores as well. After the application has

opened, there will be several debug configurations available for use in the Run and Debug tab of Activity Bar
as shown.

~ VARIABLES

The following shows the debug configurations available:

&

i-Core Debug (KitPro

re Debug (JLink) 6

0 npty_PSoC6_App)

U_Emp . App)

rog4) (Dual-CPU_Empty PSoC6_App)
App)

iProg4) (proj_cmOp)
g4) (proj_cmOp)

g4) {proj_cm4)
4) (proj_cm4)

These include:

e Multi-Core debug: programs multiple hex files, launches OpenOCD|J-Link GDB Server and starts multi-core
debug session

e Erase Device: erases all internal memory banks

e Program Device: downloads combined hex file into the flash

e Launch <device>: launches debug session on the chosen core

e Attach <device>: attaches to the running core

User Guide 88 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Using applications with third-party tools

To launch multi-core debugging, run the Multi-Core Debug configuration. You will end up with a debug session
containing two debug processes in CALL STACK view.

) FEile Edit Selection View Go Run Terminal Help main.c - Multicore Empty App (Workspace) - Visual Studio Code [Admi.. I[] & (1 | 08

RUN A UG [» Multi-Core Debug (KitProg3_MiniProg4) (~ > Y T O 0O

“ VARIABLES
~ Local

> Global

> Static

> Registers

main()
I
U

__enable_irq();

Cy_SysEnableCMa

M_WATT_FOR_INT

~ CALL STACK = _
- Multi-Core D ~ =
AiniProg4) (Mul... PAUSED ON BREAKPOINT
mainc 49

£} Attach PSoC6 CM4 {KitProg3_MiniProg4) (proj_cm4) RUNNING

Once a session has started, the CMO+ core is halted at the beginning of main (), while the CM4 core is spinning
in an endless loop in boot code, waiting for start. It will start and halt at main () as soon as the application
running on the CMO+ executes the Cy SysEnableCM4 () function.

In the CALL STACK view you can observe two debug processes, each of them associated with a specific core.

You can switch between the cores by selecting the appropriate process.

Note: There is one limitation for XMC7000 MCUs. Before launching a multi-core debug session, you must
program the MCU by launching the Program Application configuration.

User Guide 89 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Using applications with third-party tools

7.4.5 IAR Embedded Workbench for Arm

This section describes how to set up multi-core debugging in IAR Embedded Workbench for Arm IDE (IAR). For
this purpose, we need to create an IAR workspace containing a few projects (one project per MCU core).

7.4.5.1 Supported debugger probes

e KitProg3 onboard programmer

e MiniProg4
e |ARI-Jet
e J-Link

7.4.5.2 Create IAR workspace and projects

After creating a ModusToolbox™ multi-core application for use with IAR, do the following:
1. LaunchIAR.

2. Onthe main menu, select Project > Create New Project > Empty project and click OK.

3. Browse to the ModusToolbox™ project directory for one of the cores, enter a desired project name, and
click Save.

4. After the project is created, select File > Save Workspace. Then, enter a desired workspace name.
5. Select Project > Add Project Connection and click OK.

6. Onthe Select IAR Project Connection File dialog, select the .ipcf file located in the project directory for
CMO+ core and click Open.

7. Repeat steps 2-3 and 5-6 for all other core projects in the application.

Once you have a working workspace, you need to properly configure IAR projects in order to be able to
establish a multi-core debug session. Also, for some MCUs you must edit linker scripts in order to organize flash
allocation properly.

7.4.5.3 Customizing linker scripts

There are separate linker scripts for each core. Linker scripts generally require updating to allocate a proper
amount of flash for each core. The following process uses a PSoC™ 6 MCU as an example.

PSoC™6 MCU example
By default, the memory layout for a PSoC™ 6 MCU is distributed as follows:

e 2KBisallocated for CMO+ core.
e Thewhole flash is allocated for the CM4 core (1 MB or 2 MB depending on the target MCU).

To change memory allocation for the CM4 core, perform the following:

1. Select the CM4 core project and go to Project > Options > Linker > Edit.

User Guide 90 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Using applications with third-party tools

2. Select the Memory Regions tab and change IROM1 Start: from 0x10000000 to 0x10002000 as shown:

Vector Table Memory Regions Stack/Heap Sizes
Start: End:

ROM1 0x10002000 Ox101FFFFF

ROM2 0x14000000 Ox14007FFF

EROM1 0x18000000 OXIFFFFFFF
EROM2 ox0 0x0
EROM3 0x0 0x0

3. Click Save, and then OK to save the project.

4. Adjust memory allocation (flash or ram) according to your needs.

Note: Be aware that when updating the CM4 start address, linker script modification is not enough. You
must update the CM0+ project, since the CM4 core is started by the CMO+ core. Update the

CY CORTEX M4 APPL ADDRvariable defined in the system_psocé.h file, or directly substitute the
proper value in the main.c file of CMO+ application:

|,»“r Enable CM4. CY CORTEX M4 APPL ADDR must be updated if CM4 memory layout is changed. */
Cy_SysEnableCM4 (CY_CORTEX_M4 APPL_ADDR) ;

In the same manner you can edit linker scripts for XMC7000 if needed. Just make sure memory layouts of all
cores are aligned with each other. Then, build all projects before moving forward.

7.4.5.4 Configuring IAR projects

To launch a multi-core debug session, all projects within the workspace must be properly configured. In IAR
thereis a concept of 'master' and 'slave' projects. Configure the CMO+ core project as the master project, and
configure the other cores (CM4 for PSoC™ 6 and CM7 for XMC7000) as slave projects.

Project configuration for CM4/CM7 (slave) core(s)

1. Select the CM4/CMT core project and go to Project > Options:

re - IAR Embedded Warkbench IDE - Arm 9.30.1
| Project | CMSISDAP Tools Window Help
[& AddFiles..
[& AddGroup...
[#1 import File List...

Add Project Connection... e

Edit Configurations...

Remaove

T_j Create New Project... [po

™ Add Existing Project...
v

£+ Options... Alt=F7 * 4
Wersion Control System » ai
Thi
@ Make FT |s
User Guide 91 of 107 002-29893 Rev. *R

2023-01-23

ModusToolbox™ tools package user guide

Infineon

Using applications with third-party tools

2. Onthedialog, select the Debugger category in the Setup tab, and then select the appropriate Driver (I-Jet,
CMSIS-DAP, J-Link):

Categary:

Factory Settings
General Options

Static Analysis

Runtime Checking
CjC++ Compiler Setup Download Images Multicore Extra Options ~ Plugins
Assembler

Output Converter Driver FRunto
Custom Build

Il1et i I main
Build Actions
Linker Sgtup macros
e o
Simulator

CADL

CMSIS DAP
GDB Server
Ijet
JHink/3-Trace
T Stellaris [JOveride defautt
Nu-Link

Devige description file

STOOLKIT_DIRS\CONFIG\debugger:infineon\PSoCE\CYBCE | [
PE micre

STLINK

3. Enable hexfile generation.

a. Inthe Runtime Checking > Output Converter category, select the Generate additional output check

box.

b. Ensure Output format is set to Intel Extended hex.
c. Click OK.

4. Repeat these steps for your all projects for CM4/CM7 (for triple-core MCUs)

XMC7000/TRAVEO™ Il specific steps

Some XMC7000 MCUs are triple-core devices. If you are going to use a second CM7 core in your IAR workspace,

you need to implicitly set the target core in project settings so that IAR understands this project is targeting a
second CM7 core. By default, IAR connects to the first CM7 core, so specifying the target core for it can be

skipped.
1. Select the project for the second CM7 core and go to Project > Options.

2. Select the probe in the Debugger category, ans switch to the Interface tab.

3. Select the From file radio button, click Select next to the CPU label, and choose M7_1:

Options for node "em7_1" x

Categary:

Factary Settings
General Cptions

Static Analysis

Runtime Checking
C/C-++ Compiler Setup Interface Breakpoints
Assembler

Output Converter D Ovenide default
Custom Buid SLL) Ts

Build Actions I ® From file I STOOLKIT_DIRS/config/debugger/infineen/| |

Linker

O Explicit CPU: Select
Debugger L““"""“""“j

Simulator Inteface

Probe corfig Probe corfiguration file

Explicit probe corfiguration M7_0
CADI

TG Muti¢arget debug system
:
GDB Server @swp .
Ijet
I-Link{I-Trace
TI Stellaris
Nu-Link

PE micro Auto detect
STAINK
Third-Party Driver
TIMSP-FET
TIXDS

Target with muttiple CPUs

Interface speed

oK Cancel

User Guide 92 of 107 002-29893 Rev. *R

2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Using applications with third-party tools

4. Switch to the Setup tab, and select "Custom" from the Reset pull-down menu.

Category: Factoiy Settings

General Options
Static Analysis
Runtime Checking
C/C++ Compiler Setup Interface Breakpoints
Assembler
Qutput Converter
Custom Build Custom
Build Actions
Linker
Debugger
Simulator E’::'\E“m o orabe
CADI I ays prompt for prol

 selection
CMSIS DAP

GDB Server Serial no:
Ijet
JLink/J-Trace
T1 Stellaris] Log communication
Nu-Link
PE micro
ST-LINK

Resst

$PROJ_DIRS\cspycomm.log

In addition, specify a special linker script symbol in the project settings to distinguish CM7_0 from CM7_1, since
thereis a single linker script for the two CM7 cores:

1. Select the project for the first CM7 core and go to Project > Options > Linker.

2. Add core cM7 0 =1 inthe Configuration file symbol definitions field, and click OK.

Category: Facto Settings

General Options

Static Analysis

Runtime Checking
C/C++ Compiler Hiefine Diagnostics Checksum Encodings Extra Options
Assembler Config Library Input Optimizations ~ Advanced = Output List

Output Converter Linker corfiguration file
Custom Build

Build Actions Qveride default
|SPROJ_DIRS'-...'-hst'-TAHGET_APP_KIT_XMCT2_EVK'-.CC

Debugger
Simulator Edit
CADI
CMSIS DAP Corfiguration file symbol definitions: (one per line)
GOB Server 7COHE7CM77D=1|
et
IHink1-Trace

Do the same for the second CM7 core:
1. Select the project for the second CM7 core and go to Project > Options > Linker.

2. Add core cM7_1 =1 inthe Configuration file symbol definitions field, and click OK.

Note: When debugging CM4/CM?7 core stand-alone, make sure to rebuild the CMO+ project in case any
changes were made, since launching a debug session only loads the CMO+ image, but it does not
build that CM0+ project.

Build your CM4/CM7 project(s) before moving forward.

User Guide 93 of 107 002-29893 Rev. *R
2023-01-23

ModusToolbox™ tools package user guide

Infineon

Using applications with third-party tools
Project configuration for CM0+ (master) core

1. Select the CMO+ project and go to Project > Options:

Q) psocs_mutti-core - 1AR Embedded Warkbench IDE - Arm 9.30.1

File Edit View | Project | CMSIS-DAP Tools Window Help
P @ | [AddFiles..

Workspace [® AddGroup.. =
Debug [4] import File List...

- Add Project Connection... e
Files

Edit Configurations..
E @ cmlp - De o

] proj_em0 Remove
— Dproj_cmo

M Output | T Create New Project... [
‘™™ Add Existing Project...

io

e

£+ Options... Alt=F7 |t 4
iaf)
Version Control System 3
T
@ Make 7 |s

2. Onthedialog, select the Debugger category in the Setup tab, and then select the applicable Driver (I-Jet,
CMSIS-DAP, J-Link):

Categary:

Factory Settings
General Options

Static Analysis
Runtime Checking
C/C++ Compiler Setup Download Images Multicore Extra Options Plugins
Assembler
Qutput Converter Driver Runto
Custom Build I it » I [an]
Build Actions
Linker Setup macros

S
Simulator

CADI
CMSIS DAP
GDB Server
Lt Device description file
Idinkf1-Trace

T Stelaris [Overide defauit
Nu-Link:

STOOLKIT_DIRS\CONFIG \debuggertInfineon\P Sal

PE micro
STAINK

3. Switch to the Images tab to specify the extra image to be downloaded prior to debugging in order to

download images of all projects in one process.
a. Select the Download extra image check box.
b. Provide a Path to the CM4/CM7's HEX image.
c. Enter 0 for Offset.

Categary:

Factary Settings
General Options

Static Analysis
Runtime Checking

CJC++ Compiler Setup Download Muhiccre BExtra Options ~ Plugins

Assembler i
] load extr
Output Converter MILOR0 BARMERS

Custom Build ishchynskyimtw_psoc632\Muti-Core-Protc |
Build Actions

Simulatar [] Download extra image

CADI
CMSIS DAP
GDB Server
I-et
J-inkf)-Trace [Download extra image
TI Stellaris
Nu-Link
PE mico
STAINK

Debug info only

Debug info only

If you provide an OUT file instead of a HEX file, the IAR IDE will fail to halt at the beginning of main () dueto
the main function present in both the CM0+ and CM4/CM7 OUT files.

Note: For triple-core MCUs you should download two extra images.

4. Add a prebuild command to build all projects prior to programming/debugging. In the Build Actions
category set Pre-build command line to:

User Guide 94 of 107 002-29893 Rev. *R

2023-01-23

ModusToolbox™ tools package user guide

Using applications with third-party tools

iarbuild.exe <cm4/cm7 proj loc>.ewp -make Debug

Categary:

General Options
Static Analysis
Runtime Checking
CJC++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
CADI
CMSIS DAP
GDE Server
T4et
JHink/)-Trace
TI Stellaris
MNu-Link

Build Actions Configuration

Pre-build command line

|iarbuid exe SPROJ_DIRS! ‘app_cmd'cmd ewp -make Debug

Post-build command line:

Infineon

If your MCU has three cores, you might want to also specify a post-build action to build project for the third
core in the same manner.

a. Select the Generate additional output check box.

b. Ensure Output format is set to Intel Extended hex.

Enable hex file generation. In the Runtime Checking > Output Converter category:

Categony:

General Options

Static Analysis

Runtime Checking
CfC++ Compiler
Assembler

Custom Build
Build Actions
Linker
Debugger
Simulator
CADI
CMSIS DAP
GDB Server
Tdet
Jdink/-Trace
TI Stellaris
Nu-Link
PE micro
STLINK

Output

e r—— Generate additional output

Output format

Intel Extended hex ~
Output file
[] Ovenide defautt

cmi.hex

Factory Seltings

6. Click OK, and then select File > Save All to save all the changes.

7. Build the project.

IAR does not provide native multi-core debugging support when using a J-Link probe. This means that in order
to launch multi-core debugging, you must open a few IAR IDE instances manually (one instance per core). Also,
multi-core debugging with a J-Link probe lacks some features available with CMSIS-DAP and I-Jet probes.

Therefore, depending on the target probe, you need to configure projects slightly different.

CMSIS-DAP/I-Jet-specific configuration

1. Create a session configuration file.

This is an xml file containing a projects list that should be launched in a multi-core debug session. The

following shows an example for a triple-core device. For a dual-core device, remove the third partner node.
<?xml version="1.0" encoding="utf-8"?>

<sessionSetup>

<partner>

<name>cm0</name>

<workspace>C:\Users\mtw-multi-core\Multicore App\multi-

core_workspace.eww</workspace>
<project>cm0</project>
<config>Debug</config>

<numberOfCores>1</numberOfCores>
<attachToRunningTarget>false</attachToRunningTarget>

User Guide

95 of 107

002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Using applications with third-party tools

</partner>
<partner>
<name>cm7_ 0</name>
<workspace>C:\Users\mtw-multi-core\Multicore App\multi-
core_workspace.eww</workspace>
<project>cm7_ 0</project>
<config>Debug</config>
<numberOfCores>1</numberOfCores>

<attachToRunningTarget>true</attachToRunningTarget>
</partner>

<partner>
<name>cm7_1</name>
<workspace>C:\Users\mtw-multi-core\Multicore App\multi-
core workspace.eww</workspace>
<project>cm7 1</project>
<config>Debug</config>
<numberOfCores>1</numberOfCores>

<attachToRunningTarget>true</attachToRunningTarget>
</partner>

</sessionSetup>
2. Configure multi-core debugging for the CM0+ project.

a. Goto Project > Options -> Debugger.

b. Switch to the Multicore tab.

c. Select the Advanced radio button and specify a path to the session configuration file in the Session
configuration field.

d. Click OK.

Options for node "em0" x
Category: Factory Settings
General Options
Static Analysis
Runtime Checking

CfC++ Compler Setup Download Images Multicors Extra Options Plugins

Assembler

Output Converter Symmetric multicore

Custom Buld Humber of cores
Build Actions
Linker Asymmetric multicore

O s

Simulator

cADI O gmele

CMSIS DAP

GDB Server

IHet

Hink1-Trace

1 Stellaris i

Mu-Link Attach partner to punning target 1

PE micro (® Advanced

STAINK Session configuration: |C:\miw-xme 7000-multi-core'\session xml ‘ acsd
Third-Party Driver

TIMSPFET

TIXDS

Carcel
3. Savethe workspace.
H *
User Guide 96 of 107 002-29893 Rev. *R

2023-01-23

o~ _.
ModusToolbox™ tools package user guide In fI neon

Using applications with third-party tools
Launch multi-core debug session with CMSIS-DAP/I-Jet
Select the CMO project and click the Download and debug button.

IAR builds all projects, programs all the separate images, and launches a multi-core debug session. IAR opens a
separate IDE instance for each project specified in the session file. For dual-core MCUs, it should look similar to
this:

@ procs workspace - 1AR Embedded Workbench IDE - Am 3.30.1 — O X | @ proch workspace - Partner 1 - AR Embedded Workbench IDE - Arm 9301 o
File Edit View Projed Debug Disassembly CMSIS.DAP Tools Window Help File Edit View FProjed Debug Disassembly CMSIS.DAP Tools Window Help
iDNE@ &8 K DC 2LQ>%200 A Tien i BN L@ = K0 DC L Q2 SE BN R®s ®c T Simoi Timd
maine x = | Disassembiy v ax Disassembly vax
0| camw: G
; or one of its offilictes (“Cypresc™) ond s protected by and subject to - =
* worldwide patent protection (United States and foreign), Disassambly Disassembly
« United Secees coppright Laws ond internation ol :rem provtstons. 0x1000" 141c: Dx00 0x0: 0x£B00 0x080
you tiis Software only a5 provided in the License 0x1000" 141e: 0x08 Oxd . 0x0Del
kage from which you 0x1000'1420: 022 0x6: 0x0000
55 be arones you @ personal, non-exclusive, tel00D 1422: 0x0% G 00004
oy Sfire 0x1000'1428: Dxd3d Oxa: 0x0000
0x1000°'1426: Dx60 Oxc: Oxflef 0x800
(m, mdif(ca!(m tronslation, SRSS_WDT_CTL |= 0x10- 0x492a
tation of this Software except as specified 021000' 1428 0us8 0x12 - 026809
e prenibited without the express writeen permission of C/press. 0x1000' 142a: Dx22 014 Dxda2s
. Disclais THIS SOFTWARE IS PROVIDED AS-IS, WITH WO WARRANTY OF ANY KTND, alnongl f2ogoss e LA
* Disclatmer) laze:
g e BrLuOD 14ze: Ond3 ol oxzato
* WARRANTTES OF MERCHANTABILITY AMD FITNESS FOR A PARTICULAR PURPOSE. Cypre: = ol 1 xla
* reserves m right to make rqucr o :he Safn-m mm nm« Cyp €55 ¥ Oxle: Ox0ai2
L ¢ing o 0x1000'1432: Dxd? Oxle: 0x2a07
3 0x20. 0xd121
0x1000°'1434: Dx40 0x22° Ox4a24
anific int wain{woid) Dx24° 0=x400a
M domage, 026 . 0x2a00
I iihing eypreia et tn 3 i ih. ma\.c: the maufaccurer . _A ey o
* of such system or application assumes all risk of s e and in doing 02 0x0912
* 50 ogrees to indemnify Cypress ogoinst oll ummy _ £ L2
__enable_izq(): Ox2c: 0x2a07
0x1000' 143a: Dxbe Ox2e: 0xdlls
sinclude “cy_pdl.h" Cy_SysEnablaCH4 0x30: 0x=003
#include "cycfg.h” 0x1000" 143e: Dxdd 0x32. Oxda2?
. 0x1000° 143 Oxf0 0x34: 0x4323
* el Cy_SysPn_De: 0x36: 0x1889
. . 7 0x39: 0x=0id
i el derrupts ° 0x1000' 1442: Dx20 Ox3a: Oxdalf
_enable_irq();
0x1000'144¢8: Dxf? Oxle. OxdD0a
/* Encble CH4. CY_CORTEX M4 APPL_ADDR must be updated if CN4 memory Layout is changed. %/ 0x1000°1448: Oxe? Oxle: 0x2a00
Cy_SysEnableCw(CY_CORTEX_M3_APPL_ADDR) ; 0x1000'144a: Dxbf D40 0=d101
7 Dxd2. 0=4923
for (55) 0x1000 " 14de: Dxl0 Osedd: Ox=017
. _mmni” bhpt Oxd6: Oxd5le
[Cy_SysPm_DeepSleep(CY_SYSPH_WATT_FOR_TNTERRUPT); = = e
L, 0x1000' 1450: Dxbe Oxda: 0xeDld
¥ Oxdc: 0xdald
/* [] E%0 OF FILE ¥/ 0x1000'1452: Dxd? Oxde. OxdD0a
SRSS_UDT_CTL &= 0x50: 0x2200
1 rvly - m »w
Debug Lag = % |DebugLog -ax
Log o Log
Wed Sep 14 2022 145537 LawlevelRaser(sofware, delsy 200) Wed Sep 14 2022 1455 37 Atiach 10 running target completid,
Wed Sep 14 2022 1456 37 LowLevelFesetscript. delsy 200) Wed Sep 14 2022 1455 37 DMAC/Trace: Configuning platiorm side SWO componant
‘Wed Sep 14 2022 1458:37: Calling reset scnipt ResetHandler_Custom Wed Sep 14 2022 1455 37 MulhCore: Synchronous core execu tion DISABLED.
Wed Sep 14,2022 1455:37: Download completed. Wed Sep 14,2022 1455
Wed Sep 14 2022 145537 LawlsvelResersotware, deley 200) Wed Sep 14 2022 1455 37 = Silican: 1E453, Farmily 0x102, Rew.: (12 (A1)
Wed San 14 2127 145530 Tamelraset > Warl San 14 9127 1455 37 *= Flash Aot varsion 31 01320
B0 Debug log Bulld Debug Lag
Ready Errors 0 Warnings 0 n 38 Col74 System CAP NUM OV BES | Resoy - Cap M ove B

The left side of the screen shows the IAR IDE instance attached to the CM0+ core. The right side shows the CM4
core not started yet. Oncethe Cy SysEnableCM4 () function is executed on the CMO+ core, the CM4 will start
executing its application.

You can step through the code by switching back and forth between the two IAR IDE instances.

Launch multi-core debug session with J-Link
The IAR IDE does not have native support for the J-Link driver, which imposes some limitations:

¢ |ARwill not automatically open separate IDE instances for each core, thus you need to do it manually.

e Some enhanced features like are not available; see Multi-core toolbar and CTl usage.

To launch multi-core debugging with J-Link:

1. Open your multi-core IAR workspace in separate IDE instances (the number of IDE instances should be
equal to the number of cores on your MCU).

2. Select the CMO+ project in the first IDE instance and click Download and Debug. The debugger will
download all images, reset the target, and halt at the beginning of the CMO0+ project's main ().

3. Switch to the other IDE instances and select: Project > Attach to Running Target.

User Guide 97 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Using applications with third-party tools

Multi-core toolbar and CTl usage (I-Jet and CMSIS-DAP only)

When multi-core debugging is established through I-Jet or CMSIS-DAP drivers, a multi-core toolbar becomes
available. It allows you to halt and resume all/single core(s) from within a single IDE instance.

Also, there is a feature called cross trigger interface (CTI). This allows you to immediately halt/resume one core
when another core is halted/resumed. For example, this might be useful if you need to check what code is
executing one of your cores when another hits a breakpoint. To use CTI, select the Run/Step/Stop affect all
cores option available for multi-core applications:

Pem s P [Wlo - oo+l i N s T L P b IR

up_psoce_02_cmOplus.s B run/step/stop affect all cores I

P8 Run/Step/Stop affect current core only

7.4.6 Keil pVision

This section explains how to set up multi-core debugging in the pVision IDE.

7.4.6.1 Supported debugger probes

KitProg3 onboard programmer

MiniProg4
ULINK2
J-Link

7.4.6.2 Opening pVision multi-core projects
After you create a ModusToolbox™ multi-core application for use with pVision, do the following:

1. Navigate to ModusToolbox™ project directory for one of the cores and double-click project description file
(either *.cprj or *.cpdsc depending on pVision version).

The first time you do this, a dialog may pop-up offering to install missing CMSIS-Pack. Click Yes and the
pack will be installed.

2. Repeat the same process for the CM4/CMT project(s). This will create and open pVision projects.

7.4.6.3 Customizing linker scripts

There might be a situation that default memory layout may not work properly, since it is application-depended.

PSoC™6 MCU example
By default, memory the layout for PSoC6™ MCUs is distributed as follows:

e 2KBisallocated for the CMO+ core
e Thewholeflash is allocated for the CM4 core (1 MB or 2 MB depending on the target MCU)

User Guide 98 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Using applications with third-party tools

2 KB allocated for the CMO+ project might be not enough. You can check whether your image fits into the
allocated space by building the project. If it fails with an error similar to the following, you need to adjust
memory allocation:

"Error: L6220E: Load region LR_IROM1 size (39264 bytes) exceeds limit (8192 bytes). Region contains 52
bytes of padding and 12 bytes of veneers (total 64 bytes of linker generated content)."

To update memory layout:

1. Open a pVision instance with the CM0+ project, go to Project > Options for Target <target_name>, switch
to the Linker tab, and click the Edit button next to the Scatter File field to open the linker file.

2. Findthe rLasH s1zk define and increase the flash size to the desired value (for example, from 0x00002000
to 0X0000A000):

#define FLASH SIZE 0x0000A000
Then, align the new memory layout in between the CM0+ and CM4 cores:

1. Open a pVision instance with the CM4 project, go to Project > Options for Target <target_name>, switch
to the Linker tab, and click the Edit button next to the Scatter File field to open the linker file.

2. FindtherLasH cMOP SIZE define and set the exact value that was assigned for the FLASH s1zE of the
CMO+ project:
#define FLASH CMOP_ SIZE 0xA000
Then, set a new start-up address for the CM4 core in the main.c file of the CMO+ project. This can be done in two
ways:

¢ Inthe CMO+ project, go to Project > Options for Target <target_name>, switch to the C/C++ (AC6) tab,
and add a new define:
CY CORTEX M4 APPL ADDR=0x1000A000

KA Options for Target ‘Target 1' x
Device | Target | Output | Lising | User ~ C/C++ (ACE) | Asm | Linker | Debug | Utities |

Preprocessor Symbols

Define I CY_CORTEX_M4_APPL_ADDR=0x1000A000 I

Undefine:

Language / Code Generation

™ Execute-only Code Wamings: |ACSike Wamings ~ Language C: |c99 hd
Optimization: |-00 ~| [Tum Wamings into Erors Language C++ [p++11 -

I Link-Time Optimization I™ Plain Charis Signed ¥ Short enums/wehar
[Split Load and Store Multiple ™ Read-Only Posttion Independent [~ use RTTI
I~ One ELF Section per Function [” Read-White Position Independert [Mo Auto Includes

l";‘:;:‘a ‘./ ./bsps/TARGET_APP_CYBCPROTO-062-4343W/, /. /bsps/,./../bsps/TARGET_APP_CYSCPRO D
5

Con ntMrEIz ‘-Wno-packed -Wno-missing-variable-declarations -Wno-missing-prototypes -Wno-missing-noretum -Wno

Compiler ¢ 5td=c99 ~target=am-armnione-eabi mepu=cortex-mbplus ~
c;mml Hno-ti funsigned-char fshort-enums fshart-wchar
fing e

oK Cancel ‘ Defauts ‘ Help

e Alternatively, you can directly update address in the main.c file:
Cy SysEnableCM4 (€¥—CORTEXM4—APRPLABBROx1000A000) ;

Ensure all your projects can be built successfully before moving forward.

User Guide 99 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Using applications with third-party tools

7.4.6.4 Debugger configuration

Next, configure projects to launch multi-core debugging.
Configure CMO+ project

1. Goto Project > Options for Target <target_name>, switch to the Debug tab, select the applicable debug
probe (CMSIS-DAP or J-Link) as shown:

KA Options for Target 'Target 1' x

Device | Target | Output | Listing | User | C/Co+ (ACG) | Asm | Linker Debug | Liites |

" Use Simulator with restrictions Seftings | | & Use: ||CMS\S—DAP Debugger || Seings |
I Limt Speed to Real-Time

e [fusing ULINK2, select the CMSIS-DAP Debugger option as the debug probe, because the ULINK2 driver
does not support multi-core debugging.

2. Click the Settings button to configure the target driver.

o |Ifyou select the J-Link probe, a pop-up window might display reporting that device is unknown to J-
Link software.

[J-Link V7.70e Device Selection ? x

The selected device "XMC7200D-E272K8384: CORTEX-MOP" is unknown to this version of the J-ink software.
Pl Please make sure that at least the core J-Link shall connect to, is selected.
| Proper davice selection is required to Use the 14 ink internal fiach loaders
LY or fiash dawnlozd or Unlimited fiash breakpoints.

For some devices which require a special handling, selection of the correct device is important.

e |Ifso,click 0.K. and select the device manually in the opened Target device settings dialog. For XMC7200
devices, there will be three aliases, each dedicated to a separate core.

ﬂ SEGGER J-Link V7.70e - Target device settings x
Selected Device: XMC7200-8384_CMOp_tm Litte Endian ¥ | |Core #0 ¥
-~ . .
Manufacturer Device Core MNumCores Flash Siz
VIxmcHUU I VI= ter |= ter |
Infinecn XMC7200-8384_CM7_0_tm
Infinean | xme7200-8384_CM7_1_tm | cortex-mz [t [sma ke |

3. Switch to the Flash Download tab, select the Erase Sectors radio button, and select the Program, Verify,
and Reset and Run check boxes.

CMSIS-DAP Cortex-M Target Driver Setup x

Debug | Trace Flash Dowrioad | Pack |

Download Function, RAM for Algorithm
LafD " Erage Full Chip | Program
i % Frase Sectors | Verify Start: | (08002400 Size: |(00003000
" Donct Frase [Hesel and A

Programming Algorithm

Description | Device Size | Device Type ‘ Address Range

CY8CExA_SFLASH_TOCZ Tk On-chip Flash 16007C00H - 16007FFFH

CY8CEaxA_SFLASH_PKEY £ On-chip Flash 16005A00H - 160065FFH

CY8CEaxA_SFLASH_USER i3 On-chip Flash 160002800H - 16000FFFH

CY8CEaxA_WFLASH 32 On-chip Flash 14000000H - 14007FFFH

CYBCExxA_sect256KB M On-chip Flash 10000000H - T01FFFFFH
Start: | Size:

] _ree |

4. Click OK. to close the Target Driver Setup dialog.

5. Next, configure the project so that it also programs other image(s) from the CM4/CM7 project(s). Do this
using the *.ini file.

a. Create a new empty file named load_cmx.ini and save it inside the CMO+ project directory.

User Guide 100 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Using applications with third-party tools
b. Add aroapcommand with a path to the CM4/CM7 images. For example:
LOAD "..\\proj cmé4\\proj cmd4 Objects\\proj cm4.axf"
c. Add as many LoaD commands for all the CM4/CMT projects you have.

6. Go to Project > Options for Target <target_name>, select the Utilities tab, and specify the created
load_cmx.inifile in the InitFile edit field.

KA Options for Target ‘Target 1' X
Device | Target | Output | Listing | User | C/C++ (ACE) | Asm | Linker | Debug ~ Utiities

Configure Fash Menu Command

(¢ Use Target Driver for Flash Programming ¥ Use Debug Driver
— Use Debug Driver — Settings ¥ Update Target before Debugging

Ilnil Fie: [Noad e | Edt..

" Use Extemal Tool for Flash Programming

Eommand:l J

Y e [

7. Switch to the Debug tab, and click the Settings button.
The configuration settings are different for CMSIS-DAP/ULINK2 and J-Link. Refer to the following sections
for the applicable options:
e CMSIS-DAP/ULINK2 Target Driver Setup - Use the following options:
e Port: SW
e MaxClock: 1 MHz
e Connect: Normal
e Reset: SYSRESETREQ

CMSIS-DAP Cortex-M Target Driver Setup X
Debug | Trace | Flash Dowrioad | Pack |
CMSIS-DAP - JTAG/SW Adapter— - 5W Device
[=] IDCODE Device Name
SWDIO 77 ¥
Sore No: [ETE0TAGO0230 @ 1:EBADZ477 ARM CoreSight SW DP
Fimware Version: [2.0.0 J
¥ Porfsw -] ©
(o ,7
Max Clocki[1MHz ~ ~
01
Debug
Connect & Reset Options Cache Options Download Options
Cornect{Nomal -] Reset| [SYSRESETREQ ~[|| | ¥ Cache Code " Verify Code Download
[# Reset after Comnect W Cache Memory | | [T Downloadto Hash
I Log Debug Accesses | Stop after Reset
User Guide 101 of 107 002-29893 Rev. *R

2023-01-23

ModusToolbox™ tools package user guide

Using applications with third-party tools

e J-Link Target Driver Setup - Use the following options:

e Port: SW
e Maxclock: 1 MHz
e Connect: Normal

e Reset: Normal

Conne Cache Options

Cunnedl Normal - IReset. Normal - [¥ Cache Code

[¥ Reset after Connect v Cache Memory

Interface TCPAP

State: ready

Network Settings
& USB ¢ TCPAP &
P-Address Port (uto:) | _futodetect dink Info
Scan TR N
Q [oo = o JLink Cmd

Cortex Link/JTrace Target Driver Setup X
Debug | Trace | Fiash Download |

J-Link / J-Trace Adapter SW Device

L 0 1075:2] 1 IDCODE Devics Mame

Device: | Mk SWD | @ 0x6BA02477 ARM CoreSight SW-DP J

HW: [ViDiD di: [Vi70e J

FW [Lk V10 compiled Jul 22 20

: M Cloci '
‘g —
Ao G | | | |

Download Options

[~ Verify Code Download
" Download to Flash

Misc

o]

Cancel ‘ ‘

That completes configuring the CM0+ project. The next step is to configure CM4/CMT project(s).

Configure CM4/CM7 project

Infineon

1. Goto Project > Options for Target <target_name>, switch to the Utilities tab and deslect the Update

Target before Debugging check box.

Device | Target | Output | Listing | User | C/Co+ (ACE) | Asm | Linker | Debug Uit |

Configure Flash Menu Command

% Use Target Driverfor Flash Programming ¥ Use Debug Driver

~ Use Debug Driver — Setings | I I Update Target before Debugging |

int File: [-\pror_cm7_0in] L] B

" Use Extemal Tool for Flash Programming

Command|

L]

2. Switch to the Debug tab, select the applicable debug probe (CMSIS-DAP or J-Link).

e [fusing ULINK2, select the CMSIS-DAP Debugger option as the debug probe, because the ULINK2 driver
does not support multi-core debugging.

3. Click the Settings button to configure the target driver.

4. Onthe Target Driver Setup dialog, switch to the Flash Download tab, select the Do not Erase radio button,

and deselect the Program, Verify, and Reset and Run check boxes.

CMSIS-DAP Cortex-M Target Driver Setup x
Debug | Trace Flash Download] Pack |
Download Fyngti RAM for Algorithm
Ligp | O Ermse Ful Cin [Progran
" Frase Sectors [~ Verify Start: | (08026400 Size: |x00008000
' Donot Erase [~ Reset and Run
Programming Algorithm
Description | Device Size Device Type Address Range
CYBChaA_SFLASH_TOCZ Tk On-chip Flash 16007C00H - 16D07FFFH
CYBChacA_SFLASH_PKEY 3K On-chip Flash 16005A00H - 16D065FFH
CYBChacA_SFLASH_USER 2 On-chip Flash 16000800H - 16D00FFFH
CYBCHacA_WFLASH 32 On-chip Flash 14000000H - 14D07FFFH
CYBCHacA_sect256KB M On-chip Flash 10000000H - 101FFFFFH
Start. Size:
User Guide 102 of 107

002-29893 Rev. *R

2023-01-23

ModusToolbox™ tools package user guide

Using applications with third-party tools

5. Switch to the Debug tab.

Infineon

The configuration settings are different for CMSIS-DAP/ULINK2 and J-Link. Refer to the following for the

appropriate options:

e CMSIS-DAP/ULINK2 Target Driver Setup - Use the following options:

e Port: SW

e MaxClock: 1 MHz
e Connect: Normal
e Reset: VECTRESET

e Reset after Connect check box: deselected

CMSIS-DAP Cortex-M Target Driver Setup

Debug wTrace | Flash Download | Pack |
CMSIS-DAP - JTAG/SW Adapter SW Device

[Log Debug Accesses [Stop after Reset

[y | IDCODE Device Neme
SWDIO | (3 (x6BA02477 ARM CoreSight SW-DP
Serial No: [181201A50024341 © ore=d e |
Fimware Version: |2.0.0 J
F Pat:[sw =] o
(o) —
MaxClock: [1MHz =
0x02
Debug
tal ot A Bacst Coh Cache Options Download Options
ICunnEx:l [Momal +| Reser: [vECTRESET »|| | ¥ Cache Code [~ Werify Code Download
e 1 [¥ Cache Memory | | [~ Download to Flash

Help

e J-Link Target Driver Setup - Use the following options:

e Port: SW
e Max Clock: 1 MHz
e Connect: Normal

e Reset: Core

e Reset after Connect check box: deselected

Cortex JLink/JTrace Target Driver Setup X
Debug | Trace | Flash Download |
JHink / JTrace Adapter SW Device
sn: [sor07eez - IDCODE Devics Name
Device: ik] SWD | @ («6BAD2477 ARM CoreSight SW-DP
Hw: [Vvioio di: [vi7oe
FW: [iink V10 compied Jul 22 20
Port Max Clock =
sw =] liwwe o] || €
Auto Ok | \ \ \
Connect 4 Reset Options Cache Options Download Options
Connect: [Nomal v | Reset: [Core || ¥ cache Code [Verfy Code Download
[Reset after Connect ¥ Cache Memory ™ Download to Flash
Interface TCP/P Misc
& iEE TP Network Settings .
o Port (uto:) | Adodetect JLink Info
Sean I [
JLink Cmd
L L= ==
0K Cancel ‘ |
6. Click OKto close the Target Driver Setup dialog.
7. Savethe project(s).
User Guide 103 of 107

002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide | N f| neon

Using applications with third-party tools

7.4.6.5 Launching multi-core debug session
To launch a multi-core debug session, all your pVision projects must be opened in separate IDE instances.

1. Open a pVision IDE session with the project for the CMO+ core and start debugging by pressing Debug >
Start/Stop Debug Session. This will program all images, reset the target, and halt at the beginning of the

CMO+ projectmain ().

2. Repeat the same process for the CM4/CM7 core(s). This will attach the running CM4/CM7 core that will be
spinning in the boot code until the CMO+ project starts it.

Note: Ensure both projects are built before launching a debug session.

For dual-core MCUs, the projects will appear similar to these images:

@ %]
Fle Edit View Priojed Flash Debug Periphersis Tools SWCS Window Help Fie Edt View Poject Fash Debug Peiphersls Teols SIS Window Help
Eda [- [i @ eaetinerlasnsze) 5 9@ - S @-|@- Sda@ a - " = @ rasnomoesze W E P Q-0 0@ &-|E-
HERO DO DRBEsHE-O-F-0-0- 8- R R ARREHR- O 2-0-0- 02
Regusters. i isassembly ag
Peghler ek OXOSFA Ox1000AASA BDSO FOP ic7,pc) -
[
>
- x
6 Cy_SysPm_DeepSleep (CY_SYSPM_WAIT_FOR_INTERRUPT):
57
58 t (GPIO_FRT11, 1, CY_GFIO_DM_STRONG, 0, HSIOM_SEL GFIO
== .
= >
Command 8 B calStack + Loals 8 [Call Stack + Locaks Y|
Load *Cri\\mtw-psocé-multi-core\\Multicore Empty APPV\PTOI ~ | pame Location/Value Hpe Te_ENDTY_RPP\\PTO] ~ | Mame LocationfVelue Tpe
* main 0 1000042C int () ¥ main O 1000AA5C int)
@ resuft O CIBABBFC L0 - uint
< > < 5
ASSIGH BreakDisable DreakEnsble Dreakfill BearList || @constace - vocas [T ASS1GH BreakDisable BreakEnable Breaxiill DreakList | @canstat + ocn [T
Debug: Chent hlode CMSIS-0AP Debugger CHSI5-0AF Dbugger

The left side of the screen shows a pVision IDE instance attached to the CM0+ core. The right side shows the
CM4 core not started yet. Once the Cy SysEnableCM4 () function on the CMO+ core has been executed, the
CM4 will start executing its application. You can step through the code by switching back and forth between
two pVision IDE instances.

User Guide 104 of 107 002-29893 Rev. *R
2023-01-23

o~ _.
ModusToolbox™ tools package user guide ‘ | N f| neon

Using applications with third-party tools

7.5 Patched flashloaders for AIROC™ CYW208xx devices

To enable support for different QSPI settings, the ModusToolbox™ QSPI Configurator patches flashloaders and
stores FLM files for them in the application directory. When exporting such applications to 3 party IDEs (for
example, Keil pVision or IAR EWARM), these patched flashloader files must be copied into the appropriate 3
party IDE directory.

1. Copy the flashloader file located in the <app-dir=\libs\<Kit-
Name=>\COMPONENT_BSP_DESIGN_MODUS\GeneratedSource directory.
e For Keil pVision, copy the CYW208xx_SMIF.FLM file.
e For IAR EWARM, copy the CYW208xx_SMIF.out file.

2. Paste the flashloader file as follows:

o For Keil pVision, paste to the C:\Users\<User-
Name=>\AppData\Local\Arm\Packs\Cypress\CYW208xx_DFP\<Version>\Flash directory.

e For IAR EWARM, paste to the C:\Program Files\IAR Systems\Embedded Workbench
9.0\arm\config\flashloader\Infineon\CYW208XX directory.

3. Also, to use the SEGGER J-Link debugger, paste the CYW208xx_SMIF.FLM file to the C:\Program
Files\SEGGER\J-Link\Devices\Cypress\catlb directory.

7.6 Generating files for XMC™ Simulator tool

For the XMC1100, XMC1200, XMC1300, and XMC1400 families of devices, you can generate an archive file to
upload to the XMC™ Simulator tool (https://design.infineon.com/tinaui/designer.php) for simulation and
debugging. To do this:

Specify the CY SIMULATOR GEN AUTO=1 variable as follows:

e Editthe application Makefile to add the cY SIMULATOR GEN AUTO=1 variable, and then build the
application, or

e Add the variable on the command line: make build CY SIMULATOR GEN AUTO=1

When the build completes, it generates an archive file (<application-name>.tar.tgz) in the <Application-

Name>\build\<Kit-Name>\Debug directory, and the build message displays the URL to the appropriate
simulator tool. For example:

= Generating simulator archive file =

Simulator archive file C:/Users/XYZ/mtw3.0/5699/xmc-
2/Empty XMC App/build/KIT _XMC12 BOOT 001/Debug/mtb-example-xmc-empty-app.tar.tgz
successfully generated

o Ifusing the Eclipse IDE, click the link in the Quick Panel under Tools to open the XMC™ Simulator tool in the
default web browser.

e [fusingthe command line,runmake online simulator.

Upload the generated archive file to the XMC™ Simulator tool, and follow the tool's instructions for using the
tool as appropriate.

User Guide 105 of 107 002-29893 Rev. *R
2023-01-23

https://design.infineon.com/tinaui/designer.php

o _.
ModusToolbox™ tools package user guide | N f| neon

Revision history

Revision history

Revision Date Description of change

o 2020-03-24 New document.

*A 2020-03-27 Updates to screen captures and associated text.

*B 2020-04-01 Fix broken links.

*C 2020-04-29 Fix incorrect link.

*D 2020-08-28 Updates for ModusToolbox™ 2.2.

*E 2020-09-23 Corrections to Build system and Board support packages chapters.
*F 2020-09-29 Added links to KBAs; updated text for cyignore.

*G 2020-10-02 Added details for BTSDK v2.8 BSPs/libraries.

*H 2021-01-14 Updated Manifest chapter and fixed broken links.

*| 2021-03-23 Updates for ModusToolbox™ 2.3.

*J 2021-05-24 Updated information for creating a custom BSP.

*K 2021-09-27 Updates for ModusToolbox™ 2.4.

*L 2021-11-29 Merged chapter 3 (software overview) into chapter 1 (introduction).

Updated sections 6.2.3 and 6.2.4 with notes and minor details.
Added section 6.3 with information for patched flashloaders and 3™ party IDEs.

*M 2022-02-24 Added link to PSoC™ 4 Application Note.

*N 2022-04-07 Updated various links to the Infineon website.

*0 2022-09-29 Updated for version 3.0.

*P 2022-10-06 Updated IAR multi-core instructions for XMC7000 and TRAVEO™ II.

*Q 2022-11-01 Updated IAR export instructions for programming and erasing external memory.
*R 2023-01-23 Update to the BSP chapter to remove duplicate information.

Update to the Export to IAR section for XMC1000/XMC4000 devices.

User Guide 106 of 107 002-29893 Rev. *R
2023-01-23

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-01-23
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2023 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

WWWw.cypress.com/support

Document reference

IMPORTANT NOTICE

The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie") .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement of
intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and standards
concerning customer’s products and any use of the
product of Infineon Technologies in customer’s
applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology.
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS

Due to technical requirements products may contair
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineor
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

http://www.cypress.com/support
http://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	1.1 What is ModusToolbox™ software?
	1.2 Run-time software
	1.2.1 Code examples
	1.2.2 Libraries (middleware)
	1.2.2.1 Common library types:
	1.2.2.2 AIROC™ Bluetooth® Libraries:
	1.2.2.3 BSP-specific base libraries:
	1.2.2.4 PSoC™ 6 additional libraries:

	1.2.3 BSPs
	1.2.3.1 Supported devices
	1.2.3.2 BSP releases

	1.3 Development tools
	1.3.1 Directory structure
	1.3.2 Documentation
	1.3.2.1 Release notes
	1.3.2.2 Top-level documents
	1.3.2.3 Document index page

	1.3.3 IDE support
	1.3.4 Tools
	1.3.4.1 Configurators
	1.3.4.2 Other tools
	1.3.4.3 Utilities
	1.3.4.4 Build system infrastructure
	1.3.4.5 Program and debug support

	1.4 Product versioning
	1.4.1 General philosophy
	1.4.2 Tools package versioning
	1.4.3 Multiple tools versions installed
	1.4.4 Specifying alternate tools version
	1.4.4.1 Environment variable
	1.4.4.2 Specific project Makefile

	1.4.5 Tools and configurators versioning
	1.4.5.1 Configurator messages

	1.4.6 GitHub libraries versioning
	1.4.7 Dependencies between libraries
	1.4.7.1 Git repo dependencies via .mtb files
	1.4.7.2 Regular C dependencies via #include

	1.5 Partner ecosystems

	2 Getting started
	2.1 Install and configure software
	2.1.1 GUI set-up instructions
	2.1.2 CLI set-up instructions

	2.2 Open help documentation
	2.2.1 GUI documentation
	2.2.1.1 Eclipse IDE
	2.2.1.2 Other IDEs
	2.2.1.3 Configurator and tool guides

	2.2.2 CLI documentation

	2.3 Create application from template
	2.3.1 Project Creator GUI
	2.3.2 project-creator-cli

	2.4 Understand application structures
	2.4.1 Version 2.x BSPs/applications versus 3.x BSPs/applications
	2.4.2 Single-core 3.x application
	2.4.3 Multi-core 3.x application
	2.4.3.1 Multi-core application directory
	2.4.3.2 Multi-core project directories

	2.4.4 mtb_shared directory

	2.5 Build and program
	2.5.1 Use Eclipse IDE
	2.5.2 Export to another IDE
	2.5.3 Use command line
	2.5.3.1 make build
	2.5.3.2 make program

	3 Updating the example application
	3.1 Update libraries
	3.2 Update BSPs
	3.3 Configure settings for devices, peripherals, and libraries
	3.3.1 Configurator GUI tools
	3.3.2 Configurator CLI tools

	3.4 Write application code
	3.4.1 Application layers
	3.4.1.1 HAL
	3.4.1.2 PDL
	3.4.1.3 Configurators

	3.5 Debug the application
	3.5.1 Use Eclipse IDE
	3.5.2 Export to another IDE
	3.5.3 Use command line

	4 ModusToolbox™ build system
	4.1 Overview
	4.2 make help
	4.3 make getlibs
	4.3.1 repos

	4.4 BSPs
	4.5 Environment variables
	4.6 Adding source files
	4.6.1 Auto-discovery
	4.6.1.1 .cyignore
	4.6.1.2 TOOLCHAIN_<NAME>
	4.6.1.3 TARGET_<NAME>
	4.6.1.4 CONFIG_<NAME>
	4.6.1.5 COMPONENT_<NAME>
	4.6.1.6 BSP makefile

	4.7 Pre-builds and post-builds
	4.8 Available make targets
	4.8.1 General make targets
	4.8.2 IDE make targets
	4.8.3 Tools targets
	4.8.4 Utility make targets

	4.9 Available make variables
	4.9.1 Basic configuration make variables
	4.9.2 Advanced configuration make variables
	4.9.3 Getlibs make variables
	4.9.4 Path make variables
	4.9.5 Miscellaneous make variables

	5 Board support packages
	5.1 Overview
	5.2 What’s in a BSP
	5.2.1 TARGET
	5.2.2 config
	5.2.3 COMPONENT
	1.1.1
	1.1.1
	5.2.4 deps subdirectory
	5.2.5 docs subdirectory
	5.2.6 Support files
	5.2.7 bsp.mk
	5.2.8 README/RELEASE.md
	5.2.9 BTSDK-specific BSP files

	5.3 Creating your own BSP

	6 Manifest files
	6.1 Overview
	6.2 Create your own manifest
	6.2.1 Supplementing super-manifest using manifest.loc
	6.2.2 Replacing standard super-manifest using variable
	6.2.3 Processing
	6.2.4 Conflicting data

	6.3 Using offline content
	6.4 Access private repositories

	7 Using applications with third-party tools
	7.1 Version Control and sharing applications
	7.1.1 Files to include/exclude
	7.1.2 Using version control software
	7.1.3 Manual file copy
	7.1.4 Saving/exporting from IDE

	7.2 Import to Eclipse
	7.3 Exporting to supported IDEs
	7.3.1 Overview
	7.3.2 Export to VS Code
	7.3.2.1 Prerequisites
	7.3.2.2 Process example
	7.3.2.3 To debug using KitProg3/MiniProg4
	7.3.2.4 To debug using J-Link

	7.3.3 Export IAR EWARM (Windows only)
	7.3.3.1 Prerequisites
	7.3.3.2 Process example
	7.3.3.3 XMC7000 and TRAVEO™ II specific steps
	7.3.3.4 XMC 1000/4000 devices
	7.3.3.5 To use KitProg3/MiniProg4
	7.3.3.6 To use MiniProg4 with PSoC™ 6 single core and PSoC™ 6 256K
	7.3.3.7 To use J-Link
	7.3.3.8 Program external memory
	7.3.3.9 Erase PSoC™ 6 MCU with external memory enabled

	7.3.4 Export to Keil µVision 5 (Windows only)
	7.3.4.1 Prerequisites
	7.3.4.2 Process example
	7.3.4.3 To use KitProg3/MiniProg4, CMSIS-DAP, and ULink2 debuggers
	7.3.4.4 To use J-Link debugger with PSoC™ MCUs
	7.3.4.5 To use J-Link debugger with XMC7000 devices
	7.3.4.6 Program external memory
	7.3.4.7 Erase external memory

	7.4 Multi-core debugging
	7.4.1 Timing
	7.4.2 CM0+ core rule
	7.4.3 Eclipse IDE for ModusToolbox™
	7.4.4 VS Code
	7.4.5 IAR Embedded Workbench for Arm
	7.4.5.1 Supported debugger probes
	7.4.5.2 Create IAR workspace and projects
	7.4.5.3 Customizing linker scripts
	7.4.5.4 Configuring IAR projects

	7.4.6 Keil µVision
	7.4.6.1 Supported debugger probes
	7.4.6.2 Opening µVision multi-core projects
	7.4.6.3 Customizing linker scripts
	7.4.6.4 Debugger configuration
	7.4.6.5 Launching multi-core debug session

	7.5 Patched flashloaders for AIROC™ CYW208xx devices
	7.6 Generating files for XMC™ Simulator tool

	Revision history

